Spaces:
Runtime error
Runtime error
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# -------------------------------------------------------- | |
# Main training function | |
# -------------------------------------------------------- | |
import argparse | |
import datetime | |
import json | |
import numpy as np | |
import os | |
import sys | |
import time | |
import torch | |
import torch.distributed as dist | |
import torch.backends.cudnn as cudnn | |
from torch.utils.tensorboard import SummaryWriter | |
import torchvision.transforms as transforms | |
import torchvision.datasets as datasets | |
from torch.utils.data import DataLoader | |
import utils | |
import utils.misc as misc | |
from utils.misc import NativeScalerWithGradNormCount as NativeScaler | |
from models.croco_downstream import CroCoDownstreamBinocular, croco_args_from_ckpt | |
from models.pos_embed import interpolate_pos_embed | |
from models.head_downstream import PixelwiseTaskWithDPT | |
from stereoflow.datasets_stereo import get_train_dataset_stereo, get_test_datasets_stereo | |
from stereoflow.datasets_flow import get_train_dataset_flow, get_test_datasets_flow | |
from stereoflow.engine import train_one_epoch, validate_one_epoch | |
from stereoflow.criterion import * | |
def get_args_parser(): | |
# prepare subparsers | |
parser = argparse.ArgumentParser('Finetuning CroCo models on stereo or flow', add_help=False) | |
subparsers = parser.add_subparsers(title="Task (stereo or flow)", dest="task", required=True) | |
parser_stereo = subparsers.add_parser('stereo', help='Training stereo model') | |
parser_flow = subparsers.add_parser('flow', help='Training flow model') | |
def add_arg(name_or_flags, default=None, default_stereo=None, default_flow=None, **kwargs): | |
if default is not None: assert default_stereo is None and default_flow is None, "setting default makes default_stereo and default_flow disabled" | |
parser_stereo.add_argument(name_or_flags, default=default if default is not None else default_stereo, **kwargs) | |
parser_flow.add_argument(name_or_flags, default=default if default is not None else default_flow, **kwargs) | |
# output dir | |
add_arg('--output_dir', required=True, type=str, help='path where to save, if empty, automatically created') | |
# model | |
add_arg('--crop', type=int, nargs = '+', default_stereo=[352, 704], default_flow=[320, 384], help = "size of the random image crops used during training.") | |
add_arg('--pretrained', required=True, type=str, help="Load pretrained model (required as croco arguments come from there)") | |
# criterion | |
add_arg('--criterion', default_stereo='LaplacianLossBounded2()', default_flow='LaplacianLossBounded()', type=str, help='string to evaluate to get criterion') | |
add_arg('--bestmetric', default_stereo='avgerr', default_flow='EPE', type=str) | |
# dataset | |
add_arg('--dataset', type=str, required=True, help="training set") | |
# training | |
add_arg('--seed', default=0, type=int, help='seed') | |
add_arg('--batch_size', default_stereo=6, default_flow=8, type=int, help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus') | |
add_arg('--epochs', default=32, type=int, help='number of training epochs') | |
add_arg('--img_per_epoch', type=int, default=None, help='Fix the number of images seen in an epoch (None means use all training pairs)') | |
add_arg('--accum_iter', default=1, type=int, help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)') | |
add_arg('--weight_decay', type=float, default=0.05, help='weight decay (default: 0.05)') | |
add_arg('--lr', type=float, default_stereo=3e-5, default_flow=2e-5, metavar='LR', help='learning rate (absolute lr)') | |
add_arg('--min_lr', type=float, default=0., metavar='LR', help='lower lr bound for cyclic schedulers that hit 0') | |
add_arg('--warmup_epochs', type=int, default=1, metavar='N', help='epochs to warmup LR') | |
add_arg('--optimizer', default='AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))', type=str, | |
help="Optimizer from torch.optim [ default: AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) ]") | |
add_arg('--amp', default=0, type=int, choices=[0,1], help='enable automatic mixed precision training') | |
# validation | |
add_arg('--val_dataset', type=str, default='', help="Validation sets, multiple separated by + (empty string means that no validation is performed)") | |
add_arg('--tile_conf_mode', type=str, default_stereo='conf_expsigmoid_15_3', default_flow='conf_expsigmoid_10_5', help='Weights for tile aggregation') | |
add_arg('--val_overlap', default=0.7, type=float, help='Overlap value for the tiling') | |
# others | |
add_arg('--num_workers', default=8, type=int) | |
add_arg('--eval_every', type=int, default=1, help='Val loss evaluation frequency') | |
add_arg('--save_every', type=int, default=1, help='Save checkpoint frequency') | |
add_arg('--start_from', type=str, default=None, help='Start training using weights from an other model (eg for finetuning)') | |
add_arg('--tboard_log_step', type=int, default=100, help='Log to tboard every so many steps') | |
add_arg('--dist_url', default='env://', help='url used to set up distributed training') | |
return parser | |
def main(args): | |
misc.init_distributed_mode(args) | |
global_rank = misc.get_rank() | |
num_tasks = misc.get_world_size() | |
assert os.path.isfile(args.pretrained) | |
print("output_dir: "+args.output_dir) | |
os.makedirs(args.output_dir, exist_ok=True) | |
# fix the seed for reproducibility | |
seed = args.seed + misc.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
cudnn.benchmark = True | |
# Metrics / criterion | |
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
metrics = (StereoMetrics if args.task=='stereo' else FlowMetrics)().to(device) | |
criterion = eval(args.criterion).to(device) | |
print('Criterion: ', args.criterion) | |
# Prepare model | |
assert os.path.isfile(args.pretrained) | |
ckpt = torch.load(args.pretrained, 'cpu') | |
croco_args = croco_args_from_ckpt(ckpt) | |
croco_args['img_size'] = (args.crop[0], args.crop[1]) | |
print('Croco args: '+str(croco_args)) | |
args.croco_args = croco_args # saved for test time | |
# prepare head | |
num_channels = {'stereo': 1, 'flow': 2}[args.task] | |
if criterion.with_conf: num_channels += 1 | |
print(f'Building head PixelwiseTaskWithDPT() with {num_channels} channel(s)') | |
head = PixelwiseTaskWithDPT() | |
head.num_channels = num_channels | |
# build model and load pretrained weights | |
model = CroCoDownstreamBinocular(head, **croco_args) | |
interpolate_pos_embed(model, ckpt['model']) | |
msg = model.load_state_dict(ckpt['model'], strict=False) | |
print(msg) | |
total_params = sum(p.numel() for p in model.parameters()) | |
total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad) | |
print(f"Total params: {total_params}") | |
print(f"Total params trainable: {total_params_trainable}") | |
model_without_ddp = model.to(device) | |
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() | |
print("lr: %.2e" % args.lr) | |
print("accumulate grad iterations: %d" % args.accum_iter) | |
print("effective batch size: %d" % eff_batch_size) | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], static_graph=True) | |
model_without_ddp = model.module | |
# following timm: set wd as 0 for bias and norm layers | |
param_groups = misc.get_parameter_groups(model_without_ddp, args.weight_decay) | |
optimizer = eval(f"torch.optim.{args.optimizer}") | |
print(optimizer) | |
loss_scaler = NativeScaler() | |
# automatic restart | |
last_ckpt_fname = os.path.join(args.output_dir, f'checkpoint-last.pth') | |
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None | |
if not args.resume and args.start_from: | |
print(f"Starting from an other model's weights: {args.start_from}") | |
best_so_far = None | |
args.start_epoch = 0 | |
ckpt = torch.load(args.start_from, 'cpu') | |
msg = model_without_ddp.load_state_dict(ckpt['model'], strict=False) | |
print(msg) | |
else: | |
best_so_far = misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler) | |
if best_so_far is None: best_so_far = np.inf | |
# tensorboard | |
log_writer = None | |
if global_rank == 0 and args.output_dir is not None: | |
log_writer = SummaryWriter(log_dir=args.output_dir, purge_step=args.start_epoch*1000) | |
# dataset and loader | |
print('Building Train Data loader for dataset: ', args.dataset) | |
train_dataset = (get_train_dataset_stereo if args.task=='stereo' else get_train_dataset_flow)(args.dataset, crop_size=args.crop) | |
def _print_repr_dataset(d): | |
if isinstance(d, torch.utils.data.dataset.ConcatDataset): | |
for dd in d.datasets: | |
_print_repr_dataset(dd) | |
else: | |
print(repr(d)) | |
_print_repr_dataset(train_dataset) | |
print(' total length:', len(train_dataset)) | |
if args.distributed: | |
sampler_train = torch.utils.data.DistributedSampler( | |
train_dataset, num_replicas=num_tasks, rank=global_rank, shuffle=True | |
) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(train_dataset) | |
data_loader_train = torch.utils.data.DataLoader( | |
train_dataset, sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=True, | |
drop_last=True, | |
) | |
if args.val_dataset=='': | |
data_loaders_val = None | |
else: | |
print('Building Val Data loader for datasets: ', args.val_dataset) | |
val_datasets = (get_test_datasets_stereo if args.task=='stereo' else get_test_datasets_flow)(args.val_dataset) | |
for val_dataset in val_datasets: print(repr(val_dataset)) | |
data_loaders_val = [DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for val_dataset in val_datasets] | |
bestmetric = ("AVG_" if len(data_loaders_val)>1 else str(data_loaders_val[0].dataset)+'_')+args.bestmetric | |
print(f"Start training for {args.epochs} epochs") | |
start_time = time.time() | |
# Training Loop | |
for epoch in range(args.start_epoch, args.epochs): | |
if args.distributed: data_loader_train.sampler.set_epoch(epoch) | |
# Train | |
epoch_start = time.time() | |
train_stats = train_one_epoch(model, criterion, metrics, data_loader_train, optimizer, device, epoch, loss_scaler, log_writer=log_writer, args=args) | |
epoch_time = time.time() - epoch_start | |
if args.distributed: dist.barrier() | |
# Validation (current naive implementation runs the validation on every gpu ... not smart ...) | |
if data_loaders_val is not None and args.eval_every > 0 and (epoch+1) % args.eval_every == 0: | |
val_epoch_start = time.time() | |
val_stats = validate_one_epoch(model, criterion, metrics, data_loaders_val, device, epoch, log_writer=log_writer, args=args) | |
val_epoch_time = time.time() - val_epoch_start | |
val_best = val_stats[bestmetric] | |
# Save best of all | |
if val_best <= best_so_far: | |
best_so_far = val_best | |
misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='best') | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch, | |
**{f'val_{k}': v for k, v in val_stats.items()}} | |
else: | |
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, | |
'epoch': epoch,} | |
if args.distributed: dist.barrier() | |
# Save stuff | |
if args.output_dir and ((epoch+1) % args.save_every == 0 or epoch + 1 == args.epochs): | |
misc.save_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler, epoch=epoch, best_so_far=best_so_far, fname='last') | |
if args.output_dir: | |
if log_writer is not None: | |
log_writer.flush() | |
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('Training time {}'.format(total_time_str)) | |
if __name__ == '__main__': | |
args = get_args_parser() | |
args = args.parse_args() | |
main(args) |