Spaces:
Runtime error
Runtime error
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# utilitary functions for CroCo | |
# -------------------------------------------------------- | |
# References: | |
# MAE: https://github.com/facebookresearch/mae | |
# DeiT: https://github.com/facebookresearch/deit | |
# BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import builtins | |
import datetime | |
import os | |
import time | |
import math | |
import json | |
from collections import defaultdict, deque | |
from pathlib import Path | |
import numpy as np | |
import torch | |
import torch.distributed as dist | |
from torch import inf | |
class SmoothedValue(object): | |
"""Track a series of values and provide access to smoothed values over a | |
window or the global series average. | |
""" | |
def __init__(self, window_size=20, fmt=None): | |
if fmt is None: | |
fmt = "{median:.4f} ({global_avg:.4f})" | |
self.deque = deque(maxlen=window_size) | |
self.total = 0.0 | |
self.count = 0 | |
self.fmt = fmt | |
def update(self, value, n=1): | |
self.deque.append(value) | |
self.count += n | |
self.total += value * n | |
def synchronize_between_processes(self): | |
""" | |
Warning: does not synchronize the deque! | |
""" | |
if not is_dist_avail_and_initialized(): | |
return | |
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') | |
dist.barrier() | |
dist.all_reduce(t) | |
t = t.tolist() | |
self.count = int(t[0]) | |
self.total = t[1] | |
def median(self): | |
d = torch.tensor(list(self.deque)) | |
return d.median().item() | |
def avg(self): | |
d = torch.tensor(list(self.deque), dtype=torch.float32) | |
return d.mean().item() | |
def global_avg(self): | |
return self.total / self.count | |
def max(self): | |
return max(self.deque) | |
def value(self): | |
return self.deque[-1] | |
def __str__(self): | |
return self.fmt.format( | |
median=self.median, | |
avg=self.avg, | |
global_avg=self.global_avg, | |
max=self.max, | |
value=self.value) | |
class MetricLogger(object): | |
def __init__(self, delimiter="\t"): | |
self.meters = defaultdict(SmoothedValue) | |
self.delimiter = delimiter | |
def update(self, **kwargs): | |
for k, v in kwargs.items(): | |
if v is None: | |
continue | |
if isinstance(v, torch.Tensor): | |
v = v.item() | |
assert isinstance(v, (float, int)) | |
self.meters[k].update(v) | |
def __getattr__(self, attr): | |
if attr in self.meters: | |
return self.meters[attr] | |
if attr in self.__dict__: | |
return self.__dict__[attr] | |
raise AttributeError("'{}' object has no attribute '{}'".format( | |
type(self).__name__, attr)) | |
def __str__(self): | |
loss_str = [] | |
for name, meter in self.meters.items(): | |
loss_str.append( | |
"{}: {}".format(name, str(meter)) | |
) | |
return self.delimiter.join(loss_str) | |
def synchronize_between_processes(self): | |
for meter in self.meters.values(): | |
meter.synchronize_between_processes() | |
def add_meter(self, name, meter): | |
self.meters[name] = meter | |
def log_every(self, iterable, print_freq, header=None, max_iter=None): | |
i = 0 | |
if not header: | |
header = '' | |
start_time = time.time() | |
end = time.time() | |
iter_time = SmoothedValue(fmt='{avg:.4f}') | |
data_time = SmoothedValue(fmt='{avg:.4f}') | |
len_iterable = min(len(iterable), max_iter) if max_iter else len(iterable) | |
space_fmt = ':' + str(len(str(len_iterable))) + 'd' | |
log_msg = [ | |
header, | |
'[{0' + space_fmt + '}/{1}]', | |
'eta: {eta}', | |
'{meters}', | |
'time: {time}', | |
'data: {data}' | |
] | |
if torch.cuda.is_available(): | |
log_msg.append('max mem: {memory:.0f}') | |
log_msg = self.delimiter.join(log_msg) | |
MB = 1024.0 * 1024.0 | |
for it,obj in enumerate(iterable): | |
data_time.update(time.time() - end) | |
yield obj | |
iter_time.update(time.time() - end) | |
if i % print_freq == 0 or i == len_iterable - 1: | |
eta_seconds = iter_time.global_avg * (len_iterable - i) | |
eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) | |
if torch.cuda.is_available(): | |
print(log_msg.format( | |
i, len_iterable, eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time), | |
memory=torch.cuda.max_memory_allocated() / MB)) | |
else: | |
print(log_msg.format( | |
i, len_iterable, eta=eta_string, | |
meters=str(self), | |
time=str(iter_time), data=str(data_time))) | |
i += 1 | |
end = time.time() | |
if max_iter and it >= max_iter: | |
break | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print('{} Total time: {} ({:.4f} s / it)'.format( | |
header, total_time_str, total_time / len_iterable)) | |
def setup_for_distributed(is_master): | |
""" | |
This function disables printing when not in master process | |
""" | |
builtin_print = builtins.print | |
def print(*args, **kwargs): | |
force = kwargs.pop('force', False) | |
force = force or (get_world_size() > 8) | |
if is_master or force: | |
now = datetime.datetime.now().time() | |
builtin_print('[{}] '.format(now), end='') # print with time stamp | |
builtin_print(*args, **kwargs) | |
builtins.print = print | |
def is_dist_avail_and_initialized(): | |
if not dist.is_available(): | |
return False | |
if not dist.is_initialized(): | |
return False | |
return True | |
def get_world_size(): | |
if not is_dist_avail_and_initialized(): | |
return 1 | |
return dist.get_world_size() | |
def get_rank(): | |
if not is_dist_avail_and_initialized(): | |
return 0 | |
return dist.get_rank() | |
def is_main_process(): | |
return get_rank() == 0 | |
def save_on_master(*args, **kwargs): | |
if is_main_process(): | |
torch.save(*args, **kwargs) | |
def init_distributed_mode(args): | |
nodist = args.nodist if hasattr(args,'nodist') else False | |
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ and not nodist: | |
args.rank = int(os.environ["RANK"]) | |
args.world_size = int(os.environ['WORLD_SIZE']) | |
args.gpu = int(os.environ['LOCAL_RANK']) | |
else: | |
print('Not using distributed mode') | |
setup_for_distributed(is_master=True) # hack | |
args.distributed = False | |
return | |
args.distributed = True | |
torch.cuda.set_device(args.gpu) | |
args.dist_backend = 'nccl' | |
print('| distributed init (rank {}): {}, gpu {}'.format( | |
args.rank, args.dist_url, args.gpu), flush=True) | |
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url, | |
world_size=args.world_size, rank=args.rank) | |
torch.distributed.barrier() | |
setup_for_distributed(args.rank == 0) | |
class NativeScalerWithGradNormCount: | |
state_dict_key = "amp_scaler" | |
def __init__(self, enabled=True): | |
self._scaler = torch.cuda.amp.GradScaler(enabled=enabled) | |
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True): | |
self._scaler.scale(loss).backward(create_graph=create_graph) | |
if update_grad: | |
if clip_grad is not None: | |
assert parameters is not None | |
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place | |
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) | |
else: | |
self._scaler.unscale_(optimizer) | |
norm = get_grad_norm_(parameters) | |
self._scaler.step(optimizer) | |
self._scaler.update() | |
else: | |
norm = None | |
return norm | |
def state_dict(self): | |
return self._scaler.state_dict() | |
def load_state_dict(self, state_dict): | |
self._scaler.load_state_dict(state_dict) | |
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = [p for p in parameters if p.grad is not None] | |
norm_type = float(norm_type) | |
if len(parameters) == 0: | |
return torch.tensor(0.) | |
device = parameters[0].grad.device | |
if norm_type == inf: | |
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) | |
else: | |
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) | |
return total_norm | |
def save_model(args, epoch, model_without_ddp, optimizer, loss_scaler, fname=None, best_so_far=None): | |
output_dir = Path(args.output_dir) | |
if fname is None: fname = str(epoch) | |
checkpoint_path = output_dir / ('checkpoint-%s.pth' % fname) | |
to_save = { | |
'model': model_without_ddp.state_dict(), | |
'optimizer': optimizer.state_dict(), | |
'scaler': loss_scaler.state_dict(), | |
'args': args, | |
'epoch': epoch, | |
} | |
if best_so_far is not None: to_save['best_so_far'] = best_so_far | |
print(f'>> Saving model to {checkpoint_path} ...') | |
save_on_master(to_save, checkpoint_path) | |
def load_model(args, model_without_ddp, optimizer, loss_scaler): | |
args.start_epoch = 0 | |
best_so_far = None | |
if args.resume is not None: | |
if args.resume.startswith('https'): | |
checkpoint = torch.hub.load_state_dict_from_url( | |
args.resume, map_location='cpu', check_hash=True) | |
else: | |
checkpoint = torch.load(args.resume, map_location='cpu') | |
print("Resume checkpoint %s" % args.resume) | |
model_without_ddp.load_state_dict(checkpoint['model'], strict=False) | |
args.start_epoch = checkpoint['epoch'] + 1 | |
optimizer.load_state_dict(checkpoint['optimizer']) | |
if 'scaler' in checkpoint: | |
loss_scaler.load_state_dict(checkpoint['scaler']) | |
if 'best_so_far' in checkpoint: | |
best_so_far = checkpoint['best_so_far'] | |
print(" & best_so_far={:g}".format(best_so_far)) | |
else: | |
print("") | |
print("With optim & sched! start_epoch={:d}".format(args.start_epoch), end='') | |
return best_so_far | |
def all_reduce_mean(x): | |
world_size = get_world_size() | |
if world_size > 1: | |
x_reduce = torch.tensor(x).cuda() | |
dist.all_reduce(x_reduce) | |
x_reduce /= world_size | |
return x_reduce.item() | |
else: | |
return x | |
def _replace(text, src, tgt, rm=''): | |
""" Advanced string replacement. | |
Given a text: | |
- replace all elements in src by the corresponding element in tgt | |
- remove all elements in rm | |
""" | |
if len(tgt) == 1: | |
tgt = tgt * len(src) | |
assert len(src) == len(tgt), f"'{src}' and '{tgt}' should have the same len" | |
for s,t in zip(src, tgt): | |
text = text.replace(s,t) | |
for c in rm: | |
text = text.replace(c,'') | |
return text | |
def filename( obj ): | |
""" transform a python obj or cmd into a proper filename. | |
- \1 gets replaced by slash '/' | |
- \2 gets replaced by comma ',' | |
""" | |
if not isinstance(obj, str): | |
obj = repr(obj) | |
obj = str(obj).replace('()','') | |
obj = _replace(obj, '_,(*/\1\2','-__x%/,', rm=' )\'"') | |
assert all(len(s) < 256 for s in obj.split(os.sep)), 'filename too long (>256 characters):\n'+obj | |
return obj | |
def _get_num_layer_for_vit(var_name, enc_depth, dec_depth): | |
if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"): | |
return 0 | |
elif var_name.startswith("patch_embed"): | |
return 0 | |
elif var_name.startswith("enc_blocks"): | |
layer_id = int(var_name.split('.')[1]) | |
return layer_id + 1 | |
elif var_name.startswith('decoder_embed') or var_name.startswith('enc_norm'): # part of the last black | |
return enc_depth | |
elif var_name.startswith('dec_blocks'): | |
layer_id = int(var_name.split('.')[1]) | |
return enc_depth + layer_id + 1 | |
elif var_name.startswith('dec_norm'): # part of the last block | |
return enc_depth + dec_depth | |
elif any(var_name.startswith(k) for k in ['head','prediction_head']): | |
return enc_depth + dec_depth + 1 | |
else: | |
raise NotImplementedError(var_name) | |
def get_parameter_groups(model, weight_decay, layer_decay=1.0, skip_list=(), no_lr_scale_list=[]): | |
parameter_group_names = {} | |
parameter_group_vars = {} | |
enc_depth, dec_depth = None, None | |
# prepare layer decay values | |
assert layer_decay==1.0 or 0.<layer_decay<1. | |
if layer_decay<1.: | |
enc_depth = model.enc_depth | |
dec_depth = model.dec_depth if hasattr(model, 'dec_blocks') else 0 | |
num_layers = enc_depth+dec_depth | |
layer_decay_values = list(layer_decay ** (num_layers + 1 - i) for i in range(num_layers + 2)) | |
for name, param in model.named_parameters(): | |
if not param.requires_grad: | |
continue # frozen weights | |
# Assign weight decay values | |
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list: | |
group_name = "no_decay" | |
this_weight_decay = 0. | |
else: | |
group_name = "decay" | |
this_weight_decay = weight_decay | |
# Assign layer ID for LR scaling | |
if layer_decay<1.: | |
skip_scale = False | |
layer_id = _get_num_layer_for_vit(name, enc_depth, dec_depth) | |
group_name = "layer_%d_%s" % (layer_id, group_name) | |
if name in no_lr_scale_list: | |
skip_scale = True | |
group_name = f'{group_name}_no_lr_scale' | |
else: | |
layer_id = 0 | |
skip_scale = True | |
if group_name not in parameter_group_names: | |
if not skip_scale: | |
scale = layer_decay_values[layer_id] | |
else: | |
scale = 1. | |
parameter_group_names[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name] = { | |
"weight_decay": this_weight_decay, | |
"params": [], | |
"lr_scale": scale | |
} | |
parameter_group_vars[group_name]["params"].append(param) | |
parameter_group_names[group_name]["params"].append(name) | |
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) | |
return list(parameter_group_vars.values()) | |
def adjust_learning_rate(optimizer, epoch, args): | |
"""Decay the learning rate with half-cycle cosine after warmup""" | |
if epoch < args.warmup_epochs: | |
lr = args.lr * epoch / args.warmup_epochs | |
else: | |
lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \ | |
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs))) | |
for param_group in optimizer.param_groups: | |
if "lr_scale" in param_group: | |
param_group["lr"] = lr * param_group["lr_scale"] | |
else: | |
param_group["lr"] = lr | |
return lr | |