Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# InLoc dataloader | |
# -------------------------------------------------------- | |
import os | |
import numpy as np | |
import torch | |
import PIL.Image | |
import scipy.io | |
import kapture | |
from kapture.io.csv import kapture_from_dir | |
from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file | |
from dust3r_visloc.datasets.utils import cam_to_world_from_kapture, get_resize_function, rescale_points3d | |
from dust3r_visloc.datasets.base_dataset import BaseVislocDataset | |
from dust3r.datasets.utils.transforms import ImgNorm | |
from dust3r.utils.geometry import xy_grid, geotrf | |
def read_alignments(path_to_alignment): | |
aligns = {} | |
with open(path_to_alignment, "r") as fid: | |
while True: | |
line = fid.readline() | |
if not line: | |
break | |
if len(line) == 4: | |
trans_nr = line[:-1] | |
while line != 'After general icp:\n': | |
line = fid.readline() | |
line = fid.readline() | |
p = [] | |
for i in range(4): | |
elems = line.split(' ') | |
line = fid.readline() | |
for e in elems: | |
if len(e) != 0: | |
p.append(float(e)) | |
P = np.array(p).reshape(4, 4) | |
aligns[trans_nr] = P | |
return aligns | |
class VislocInLoc(BaseVislocDataset): | |
def __init__(self, root, pairsfile, topk=1): | |
super().__init__() | |
self.root = root | |
self.topk = topk | |
self.num_views = self.topk + 1 | |
self.maxdim = None | |
self.patch_size = None | |
query_path = os.path.join(self.root, 'query') | |
kdata_query = kapture_from_dir(query_path) | |
assert kdata_query.records_camera is not None | |
kdata_query_searchindex = {kdata_query.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) | |
for timestamp, sensor_id in kdata_query.records_camera.key_pairs()} | |
self.query_data = {'path': query_path, 'kdata': kdata_query, 'searchindex': kdata_query_searchindex} | |
map_path = os.path.join(self.root, 'mapping') | |
kdata_map = kapture_from_dir(map_path) | |
assert kdata_map.records_camera is not None and kdata_map.trajectories is not None | |
kdata_map_searchindex = {kdata_map.records_camera[(timestamp, sensor_id)]: (timestamp, sensor_id) | |
for timestamp, sensor_id in kdata_map.records_camera.key_pairs()} | |
self.map_data = {'path': map_path, 'kdata': kdata_map, 'searchindex': kdata_map_searchindex} | |
try: | |
self.pairs = get_ordered_pairs_from_file(os.path.join(self.root, 'pairfiles/query', pairsfile + '.txt')) | |
except Exception as e: | |
# if using pairs from hloc | |
self.pairs = {} | |
with open(os.path.join(self.root, 'pairfiles/query', pairsfile + '.txt'), 'r') as fid: | |
lines = fid.readlines() | |
for line in lines: | |
splits = line.rstrip("\n\r").split(" ") | |
self.pairs.setdefault(splits[0].replace('query/', ''), []).append( | |
(splits[1].replace('database/cutouts/', ''), 1.0) | |
) | |
self.scenes = kdata_query.records_camera.data_list() | |
self.aligns_DUC1 = read_alignments(os.path.join(self.root, 'mapping/DUC1_alignment/all_transformations.txt')) | |
self.aligns_DUC2 = read_alignments(os.path.join(self.root, 'mapping/DUC2_alignment/all_transformations.txt')) | |
def __len__(self): | |
return len(self.scenes) | |
def __getitem__(self, idx): | |
assert self.maxdim is not None and self.patch_size is not None | |
query_image = self.scenes[idx] | |
map_images = [p[0] for p in self.pairs[query_image][:self.topk]] | |
views = [] | |
dataarray = [(query_image, self.query_data, False)] + [(map_image, self.map_data, True) | |
for map_image in map_images] | |
for idx, (imgname, data, should_load_depth) in enumerate(dataarray): | |
imgpath, kdata, searchindex = map(data.get, ['path', 'kdata', 'searchindex']) | |
timestamp, camera_id = searchindex[imgname] | |
# for InLoc, SIMPLE_PINHOLE | |
camera_params = kdata.sensors[camera_id].camera_params | |
W, H, f, cx, cy = camera_params | |
distortion = [0, 0, 0, 0] | |
intrinsics = np.float32([(f, 0, cx), | |
(0, f, cy), | |
(0, 0, 1)]) | |
if kdata.trajectories is not None and (timestamp, camera_id) in kdata.trajectories: | |
cam_to_world = cam_to_world_from_kapture(kdata, timestamp, camera_id) | |
else: | |
cam_to_world = np.eye(4, dtype=np.float32) | |
# Load RGB image | |
rgb_image = PIL.Image.open(os.path.join(imgpath, 'sensors/records_data', imgname)).convert('RGB') | |
rgb_image.load() | |
W, H = rgb_image.size | |
resize_func, to_resize, to_orig = get_resize_function(self.maxdim, self.patch_size, H, W) | |
rgb_tensor = resize_func(ImgNorm(rgb_image)) | |
view = { | |
'intrinsics': intrinsics, | |
'distortion': distortion, | |
'cam_to_world': cam_to_world, | |
'rgb': rgb_image, | |
'rgb_rescaled': rgb_tensor, | |
'to_orig': to_orig, | |
'idx': idx, | |
'image_name': imgname | |
} | |
# Load depthmap | |
if should_load_depth: | |
depthmap_filename = os.path.join(imgpath, 'sensors/records_data', imgname + '.mat') | |
depthmap = scipy.io.loadmat(depthmap_filename) | |
pt3d_cut = depthmap['XYZcut'] | |
scene_id = imgname.replace('\\', '/').split('/')[1] | |
if imgname.startswith('DUC1'): | |
pts3d_full = geotrf(self.aligns_DUC1[scene_id], pt3d_cut) | |
else: | |
pts3d_full = geotrf(self.aligns_DUC2[scene_id], pt3d_cut) | |
pts3d_valid = np.isfinite(pts3d_full.sum(axis=-1)) | |
pts3d = pts3d_full[pts3d_valid] | |
pts2d_int = xy_grid(W, H)[pts3d_valid] | |
pts2d = pts2d_int.astype(np.float64) | |
# nan => invalid | |
pts3d_full[~pts3d_valid] = np.nan | |
pts3d_full = torch.from_numpy(pts3d_full) | |
view['pts3d'] = pts3d_full | |
view["valid"] = pts3d_full.sum(dim=-1).isfinite() | |
HR, WR = rgb_tensor.shape[1:] | |
_, _, pts3d_rescaled, valid_rescaled = rescale_points3d(pts2d, pts3d, to_resize, HR, WR) | |
pts3d_rescaled = torch.from_numpy(pts3d_rescaled) | |
valid_rescaled = torch.from_numpy(valid_rescaled) | |
view['pts3d_rescaled'] = pts3d_rescaled | |
view["valid_rescaled"] = valid_rescaled | |
views.append(view) | |
return views | |