Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Script to pre-process the scannet++ dataset. | |
# Usage: | |
# python3 datasets_preprocess/preprocess_scannetpp.py --scannetpp_dir /path/to/scannetpp --precomputed_pairs /path/to/scannetpp_pairs --pyopengl-platform egl | |
# -------------------------------------------------------- | |
import os | |
import argparse | |
import os.path as osp | |
import re | |
from tqdm import tqdm | |
import json | |
from scipy.spatial.transform import Rotation | |
import pyrender | |
import trimesh | |
import trimesh.exchange.ply | |
import numpy as np | |
import cv2 | |
import PIL.Image as Image | |
from dust3r.datasets.utils.cropping import rescale_image_depthmap | |
import dust3r.utils.geometry as geometry | |
inv = np.linalg.inv | |
norm = np.linalg.norm | |
REGEXPR_DSLR = re.compile(r'^DSC(?P<frameid>\d+).JPG$') | |
REGEXPR_IPHONE = re.compile(r'frame_(?P<frameid>\d+).jpg$') | |
DEBUG_VIZ = None # 'iou' | |
if DEBUG_VIZ is not None: | |
import matplotlib.pyplot as plt # noqa | |
OPENGL_TO_OPENCV = np.float32([[1, 0, 0, 0], | |
[0, -1, 0, 0], | |
[0, 0, -1, 0], | |
[0, 0, 0, 1]]) | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--scannetpp_dir', required=True) | |
parser.add_argument('--precomputed_pairs', required=True) | |
parser.add_argument('--output_dir', default='data/scannetpp_processed') | |
parser.add_argument('--target_resolution', default=920, type=int, help="images resolution") | |
parser.add_argument('--pyopengl-platform', type=str, default='', help='PyOpenGL env variable') | |
return parser | |
def pose_from_qwxyz_txyz(elems): | |
qw, qx, qy, qz, tx, ty, tz = map(float, elems) | |
pose = np.eye(4) | |
pose[:3, :3] = Rotation.from_quat((qx, qy, qz, qw)).as_matrix() | |
pose[:3, 3] = (tx, ty, tz) | |
return np.linalg.inv(pose) # returns cam2world | |
def get_frame_number(name, cam_type='dslr'): | |
if cam_type == 'dslr': | |
regex_expr = REGEXPR_DSLR | |
elif cam_type == 'iphone': | |
regex_expr = REGEXPR_IPHONE | |
else: | |
raise NotImplementedError(f'wrong {cam_type=} for get_frame_number') | |
matches = re.match(regex_expr, name) | |
return matches['frameid'] | |
def load_sfm(sfm_dir, cam_type='dslr'): | |
# load cameras | |
with open(osp.join(sfm_dir, 'cameras.txt'), 'r') as f: | |
raw = f.read().splitlines()[3:] # skip header | |
intrinsics = {} | |
for camera in tqdm(raw, position=1, leave=False): | |
camera = camera.split(' ') | |
intrinsics[int(camera[0])] = [camera[1]] + [float(cam) for cam in camera[2:]] | |
# load images | |
with open(os.path.join(sfm_dir, 'images.txt'), 'r') as f: | |
raw = f.read().splitlines() | |
raw = [line for line in raw if not line.startswith('#')] # skip header | |
img_idx = {} | |
img_infos = {} | |
for image, points in tqdm(zip(raw[0::2], raw[1::2]), total=len(raw) // 2, position=1, leave=False): | |
image = image.split(' ') | |
points = points.split(' ') | |
idx = image[0] | |
img_name = image[-1] | |
assert img_name not in img_idx, 'duplicate db image: ' + img_name | |
img_idx[img_name] = idx # register image name | |
current_points2D = {int(i): (float(x), float(y)) | |
for i, x, y in zip(points[2::3], points[0::3], points[1::3]) if i != '-1'} | |
img_infos[idx] = dict(intrinsics=intrinsics[int(image[-2])], | |
path=img_name, | |
frame_id=get_frame_number(img_name, cam_type), | |
cam_to_world=pose_from_qwxyz_txyz(image[1: -2]), | |
sparse_pts2d=current_points2D) | |
# load 3D points | |
with open(os.path.join(sfm_dir, 'points3D.txt'), 'r') as f: | |
raw = f.read().splitlines() | |
raw = [line for line in raw if not line.startswith('#')] # skip header | |
points3D = {} | |
observations = {idx: [] for idx in img_infos.keys()} | |
for point in tqdm(raw, position=1, leave=False): | |
point = point.split() | |
point_3d_idx = int(point[0]) | |
points3D[point_3d_idx] = tuple(map(float, point[1:4])) | |
if len(point) > 8: | |
for idx, point_2d_idx in zip(point[8::2], point[9::2]): | |
observations[idx].append((point_3d_idx, int(point_2d_idx))) | |
return img_idx, img_infos, points3D, observations | |
def subsample_img_infos(img_infos, num_images, allowed_name_subset=None): | |
img_infos_val = [(idx, val) for idx, val in img_infos.items()] | |
if allowed_name_subset is not None: | |
img_infos_val = [(idx, val) for idx, val in img_infos_val if val['path'] in allowed_name_subset] | |
if len(img_infos_val) > num_images: | |
img_infos_val = sorted(img_infos_val, key=lambda x: x[1]['frame_id']) | |
kept_idx = np.round(np.linspace(0, len(img_infos_val) - 1, num_images)).astype(int).tolist() | |
img_infos_val = [img_infos_val[idx] for idx in kept_idx] | |
return {idx: val for idx, val in img_infos_val} | |
def undistort_images(intrinsics, rgb, mask): | |
camera_type = intrinsics[0] | |
width = int(intrinsics[1]) | |
height = int(intrinsics[2]) | |
fx = intrinsics[3] | |
fy = intrinsics[4] | |
cx = intrinsics[5] | |
cy = intrinsics[6] | |
distortion = np.array(intrinsics[7:]) | |
K = np.zeros([3, 3]) | |
K[0, 0] = fx | |
K[0, 2] = cx | |
K[1, 1] = fy | |
K[1, 2] = cy | |
K[2, 2] = 1 | |
K = geometry.colmap_to_opencv_intrinsics(K) | |
if camera_type == "OPENCV_FISHEYE": | |
assert len(distortion) == 4 | |
new_K = cv2.fisheye.estimateNewCameraMatrixForUndistortRectify( | |
K, | |
distortion, | |
(width, height), | |
np.eye(3), | |
balance=0.0, | |
) | |
# Make the cx and cy to be the center of the image | |
new_K[0, 2] = width / 2.0 | |
new_K[1, 2] = height / 2.0 | |
map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1) | |
else: | |
new_K, _ = cv2.getOptimalNewCameraMatrix(K, distortion, (width, height), 1, (width, height), True) | |
map1, map2 = cv2.initUndistortRectifyMap(K, distortion, np.eye(3), new_K, (width, height), cv2.CV_32FC1) | |
undistorted_image = cv2.remap(rgb, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REFLECT_101) | |
undistorted_mask = cv2.remap(mask, map1, map2, interpolation=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, borderValue=255) | |
new_K = geometry.opencv_to_colmap_intrinsics(new_K) | |
return width, height, new_K, undistorted_image, undistorted_mask | |
def process_scenes(root, pairsdir, output_dir, target_resolution): | |
os.makedirs(output_dir, exist_ok=True) | |
# default values from | |
# https://github.com/scannetpp/scannetpp/blob/main/common/configs/render.yml | |
znear = 0.05 | |
zfar = 20.0 | |
listfile = osp.join(pairsdir, 'scene_list.json') | |
with open(listfile, 'r') as f: | |
scenes = json.load(f) | |
# for each of these, we will select some dslr images and some iphone images | |
# we will undistort them and render their depth | |
renderer = pyrender.OffscreenRenderer(0, 0) | |
for scene in tqdm(scenes, position=0, leave=True): | |
data_dir = os.path.join(root, 'data', scene) | |
dir_dslr = os.path.join(data_dir, 'dslr') | |
dir_iphone = os.path.join(data_dir, 'iphone') | |
dir_scans = os.path.join(data_dir, 'scans') | |
assert os.path.isdir(data_dir) and os.path.isdir(dir_dslr) \ | |
and os.path.isdir(dir_iphone) and os.path.isdir(dir_scans) | |
output_dir_scene = os.path.join(output_dir, scene) | |
scene_metadata_path = osp.join(output_dir_scene, 'scene_metadata.npz') | |
if osp.isfile(scene_metadata_path): | |
continue | |
pairs_dir_scene = os.path.join(pairsdir, scene) | |
pairs_dir_scene_selected_pairs = os.path.join(pairs_dir_scene, 'selected_pairs.npz') | |
assert osp.isfile(pairs_dir_scene_selected_pairs) | |
selected_npz = np.load(pairs_dir_scene_selected_pairs) | |
selection, pairs = selected_npz['selection'], selected_npz['pairs'] | |
# set up the output paths | |
output_dir_scene_rgb = os.path.join(output_dir_scene, 'images') | |
output_dir_scene_depth = os.path.join(output_dir_scene, 'depth') | |
os.makedirs(output_dir_scene_rgb, exist_ok=True) | |
os.makedirs(output_dir_scene_depth, exist_ok=True) | |
ply_path = os.path.join(dir_scans, 'mesh_aligned_0.05.ply') | |
sfm_dir_dslr = os.path.join(dir_dslr, 'colmap') | |
rgb_dir_dslr = os.path.join(dir_dslr, 'resized_images') | |
mask_dir_dslr = os.path.join(dir_dslr, 'resized_anon_masks') | |
sfm_dir_iphone = os.path.join(dir_iphone, 'colmap') | |
rgb_dir_iphone = os.path.join(dir_iphone, 'rgb') | |
mask_dir_iphone = os.path.join(dir_iphone, 'rgb_masks') | |
# load the mesh | |
with open(ply_path, 'rb') as f: | |
mesh_kwargs = trimesh.exchange.ply.load_ply(f) | |
mesh_scene = trimesh.Trimesh(**mesh_kwargs) | |
# read colmap reconstruction, we will only use the intrinsics and pose here | |
img_idx_dslr, img_infos_dslr, points3D_dslr, observations_dslr = load_sfm(sfm_dir_dslr, cam_type='dslr') | |
dslr_paths = { | |
"in_colmap": sfm_dir_dslr, | |
"in_rgb": rgb_dir_dslr, | |
"in_mask": mask_dir_dslr, | |
} | |
img_idx_iphone, img_infos_iphone, points3D_iphone, observations_iphone = load_sfm( | |
sfm_dir_iphone, cam_type='iphone') | |
iphone_paths = { | |
"in_colmap": sfm_dir_iphone, | |
"in_rgb": rgb_dir_iphone, | |
"in_mask": mask_dir_iphone, | |
} | |
mesh = pyrender.Mesh.from_trimesh(mesh_scene, smooth=False) | |
pyrender_scene = pyrender.Scene() | |
pyrender_scene.add(mesh) | |
selection_dslr = [imgname + '.JPG' for imgname in selection if imgname.startswith('DSC')] | |
selection_iphone = [imgname + '.jpg' for imgname in selection if imgname.startswith('frame_')] | |
# resize the image to a more manageable size and render depth | |
for selection_cam, img_idx, img_infos, paths_data in [(selection_dslr, img_idx_dslr, img_infos_dslr, dslr_paths), | |
(selection_iphone, img_idx_iphone, img_infos_iphone, iphone_paths)]: | |
rgb_dir = paths_data['in_rgb'] | |
mask_dir = paths_data['in_mask'] | |
for imgname in tqdm(selection_cam, position=1, leave=False): | |
imgidx = img_idx[imgname] | |
img_infos_idx = img_infos[imgidx] | |
rgb = np.array(Image.open(os.path.join(rgb_dir, img_infos_idx['path']))) | |
mask = np.array(Image.open(os.path.join(mask_dir, img_infos_idx['path'][:-3] + 'png'))) | |
_, _, K, rgb, mask = undistort_images(img_infos_idx['intrinsics'], rgb, mask) | |
# rescale_image_depthmap assumes opencv intrinsics | |
intrinsics = geometry.colmap_to_opencv_intrinsics(K) | |
image, mask, intrinsics = rescale_image_depthmap( | |
rgb, mask, intrinsics, (target_resolution, target_resolution * 3.0 / 4)) | |
W, H = image.size | |
intrinsics = geometry.opencv_to_colmap_intrinsics(intrinsics) | |
# update inpace img_infos_idx | |
img_infos_idx['intrinsics'] = intrinsics | |
rgb_outpath = os.path.join(output_dir_scene_rgb, img_infos_idx['path'][:-3] + 'jpg') | |
image.save(rgb_outpath) | |
depth_outpath = os.path.join(output_dir_scene_depth, img_infos_idx['path'][:-3] + 'png') | |
# render depth image | |
renderer.viewport_width, renderer.viewport_height = W, H | |
fx, fy, cx, cy = intrinsics[0, 0], intrinsics[1, 1], intrinsics[0, 2], intrinsics[1, 2] | |
camera = pyrender.camera.IntrinsicsCamera(fx, fy, cx, cy, znear=znear, zfar=zfar) | |
camera_node = pyrender_scene.add(camera, pose=img_infos_idx['cam_to_world'] @ OPENGL_TO_OPENCV) | |
depth = renderer.render(pyrender_scene, flags=pyrender.RenderFlags.DEPTH_ONLY) | |
pyrender_scene.remove_node(camera_node) # dont forget to remove camera | |
depth = (depth * 1000).astype('uint16') | |
# invalidate depth from mask before saving | |
depth_mask = (mask < 255) | |
depth[depth_mask] = 0 | |
Image.fromarray(depth).save(depth_outpath) | |
trajectories = [] | |
intrinsics = [] | |
for imgname in selection: | |
if imgname.startswith('DSC'): | |
imgidx = img_idx_dslr[imgname + '.JPG'] | |
img_infos_idx = img_infos_dslr[imgidx] | |
elif imgname.startswith('frame_'): | |
imgidx = img_idx_iphone[imgname + '.jpg'] | |
img_infos_idx = img_infos_iphone[imgidx] | |
else: | |
raise ValueError('invalid image name') | |
intrinsics.append(img_infos_idx['intrinsics']) | |
trajectories.append(img_infos_idx['cam_to_world']) | |
intrinsics = np.stack(intrinsics, axis=0) | |
trajectories = np.stack(trajectories, axis=0) | |
# save metadata for this scene | |
np.savez(scene_metadata_path, | |
trajectories=trajectories, | |
intrinsics=intrinsics, | |
images=selection, | |
pairs=pairs) | |
del img_infos | |
del pyrender_scene | |
# concat all scene_metadata.npz into a single file | |
scene_data = {} | |
for scene_subdir in scenes: | |
scene_metadata_path = osp.join(output_dir, scene_subdir, 'scene_metadata.npz') | |
with np.load(scene_metadata_path) as data: | |
trajectories = data['trajectories'] | |
intrinsics = data['intrinsics'] | |
images = data['images'] | |
pairs = data['pairs'] | |
scene_data[scene_subdir] = {'trajectories': trajectories, | |
'intrinsics': intrinsics, | |
'images': images, | |
'pairs': pairs} | |
offset = 0 | |
counts = [] | |
scenes = [] | |
sceneids = [] | |
images = [] | |
intrinsics = [] | |
trajectories = [] | |
pairs = [] | |
for scene_idx, (scene_subdir, data) in enumerate(scene_data.items()): | |
num_imgs = data['images'].shape[0] | |
img_pairs = data['pairs'] | |
scenes.append(scene_subdir) | |
sceneids.extend([scene_idx] * num_imgs) | |
images.append(data['images']) | |
intrinsics.append(data['intrinsics']) | |
trajectories.append(data['trajectories']) | |
# offset pairs | |
img_pairs[:, 0:2] += offset | |
pairs.append(img_pairs) | |
counts.append(offset) | |
offset += num_imgs | |
images = np.concatenate(images, axis=0) | |
intrinsics = np.concatenate(intrinsics, axis=0) | |
trajectories = np.concatenate(trajectories, axis=0) | |
pairs = np.concatenate(pairs, axis=0) | |
np.savez(osp.join(output_dir, 'all_metadata.npz'), | |
counts=counts, | |
scenes=scenes, | |
sceneids=sceneids, | |
images=images, | |
intrinsics=intrinsics, | |
trajectories=trajectories, | |
pairs=pairs) | |
print('all done') | |
if __name__ == '__main__': | |
parser = get_parser() | |
args = parser.parse_args() | |
if args.pyopengl_platform.strip(): | |
os.environ['PYOPENGL_PLATFORM'] = args.pyopengl_platform | |
process_scenes(args.scannetpp_dir, args.precomputed_pairs, args.output_dir, args.target_resolution) | |