Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# | |
# This source code is licensed under the Apache License, Version 2.0 | |
# found in the LICENSE file in the root directory of this source tree. | |
import torch | |
import torch.nn as nn | |
from torch.nn.init import trunc_normal_ | |
from torch.nn.utils import weight_norm | |
class DINOHead(nn.Module): | |
def __init__( | |
self, | |
in_dim, | |
out_dim, | |
use_bn=False, | |
nlayers=3, | |
hidden_dim=2048, | |
bottleneck_dim=256, | |
mlp_bias=True, | |
): | |
super().__init__() | |
nlayers = max(nlayers, 1) | |
self.mlp = _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=hidden_dim, use_bn=use_bn, bias=mlp_bias) | |
self.apply(self._init_weights) | |
self.last_layer = weight_norm(nn.Linear(bottleneck_dim, out_dim, bias=False)) | |
self.last_layer.weight_g.data.fill_(1) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x): | |
x = self.mlp(x) | |
eps = 1e-6 if x.dtype == torch.float16 else 1e-12 | |
x = nn.functional.normalize(x, dim=-1, p=2, eps=eps) | |
x = self.last_layer(x) | |
return x | |
def _build_mlp(nlayers, in_dim, bottleneck_dim, hidden_dim=None, use_bn=False, bias=True): | |
if nlayers == 1: | |
return nn.Linear(in_dim, bottleneck_dim, bias=bias) | |
else: | |
layers = [nn.Linear(in_dim, hidden_dim, bias=bias)] | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
for _ in range(nlayers - 2): | |
layers.append(nn.Linear(hidden_dim, hidden_dim, bias=bias)) | |
if use_bn: | |
layers.append(nn.BatchNorm1d(hidden_dim)) | |
layers.append(nn.GELU()) | |
layers.append(nn.Linear(hidden_dim, bottleneck_dim, bias=bias)) | |
return nn.Sequential(*layers) | |