from inspect import isfunction import math import torch import torch.nn.functional as F from torch import nn, einsum from einops import rearrange, repeat import numpy as np FLASH_IS_AVAILABLE = XFORMERS_IS_AVAILBLE = False try: from flash_attn import flash_attn_qkvpacked_func, flash_attn_func FLASH_IS_AVAILABLE = True except: try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: pass def exists(val): return val is not None def uniq(arr): return{el: True for el in arr}.keys() def default(val, d): if exists(val): return val return d() if isfunction(d) else d def max_neg_value(t): return -torch.finfo(t.dtype).max def init_(tensor): dim = tensor.shape[-1] std = 1 / math.sqrt(dim) tensor.uniform_(-std, std) return tensor def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) class CheckpointFunction(torch.autograd.Function): @staticmethod def forward(ctx, run_function, length, *args): ctx.run_function = run_function ctx.input_tensors = list(args[:length]) ctx.input_params = list(args[length:]) with torch.no_grad(): output_tensors = ctx.run_function(*ctx.input_tensors) return output_tensors @staticmethod def backward(ctx, *output_grads): ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] with torch.enable_grad(): # Fixes a bug where the first op in run_function modifies the # Tensor storage in place, which is not allowed for detach()'d # Tensors. shallow_copies = [x.view_as(x) for x in ctx.input_tensors] output_tensors = ctx.run_function(*shallow_copies) input_grads = torch.autograd.grad( output_tensors, ctx.input_tensors + ctx.input_params, output_grads, allow_unused=True, ) del ctx.input_tensors del ctx.input_params del output_tensors return (None, None) + input_grads # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential( nn.Linear(dim, inner_dim), nn.GELU() ) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential( project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) ) def forward(self, x): return self.net(x) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class LinearAttention(nn.Module): def __init__(self, dim, heads=4, dim_head=32): super().__init__() self.heads = heads hidden_dim = dim_head * heads self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) self.to_out = nn.Conv2d(hidden_dim, dim, 1) def forward(self, x): b, c, h, w = x.shape qkv = self.to_qkv(x) q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) k = k.softmax(dim=-1) context = torch.einsum('bhdn,bhen->bhde', k, v) out = torch.einsum('bhde,bhdn->bhen', context, q) out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) return self.to_out(out) class SpatialSelfAttention(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = rearrange(q, 'b c h w -> b (h w) c') k = rearrange(k, 'b c h w -> b c (h w)') w_ = torch.einsum('bij,bjk->bik', q, k) w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = rearrange(v, 'b c h w -> b c (h w)') w_ = rearrange(w_, 'b i j -> b j i') h_ = torch.einsum('bij,bjk->bik', v, w_) h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) h_ = self.proj_out(h_) return x+h_ class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) sim = einsum('b i d, b j d -> b i j', q, k) * self.scale if exists(mask): mask = rearrange(mask, 'b ... -> b (...)') max_neg_value = -torch.finfo(sim.dtype).max mask = repeat(mask, 'b j -> (b h) () j', h=h) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) # [b*h, n, d] out = rearrange(out, '(b h) n d -> b n (h d)', h=h) return self.to_out(out) class FlashAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): super().__init__() # print( # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " # "context_dim is {context_dim} and using " # f"{heads} heads." # ) inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head ** -0.5 self.heads = heads self.dropout = dropout self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) ) def forward(self, x, context=None, mask=None): context = default(context, x) h = self.heads dtype = torch.bfloat16 # torch.half q = self.to_q(x).to(dtype) k = self.to_k(context).to(dtype) v = self.to_v(context).to(dtype) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q, k, v)) # q is [b, 3079, 16, 64] out = flash_attn_func(q, k, v, dropout_p=self.dropout, softmax_scale=None, causal=False, window_size=(-1, -1) ) # out is same shape to q out = rearrange(out, 'b n h d -> b n (h d)', h=h) return self.to_out(out.float()) class MemoryEfficientCrossAttention(nn.Module): # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() # print( # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " # "context_dim is {context_dim} and using " # f"{heads} heads." # ) inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.heads = heads self.dim_head = dim_head self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) self.attention_op: Optional[Any] = None def forward(self, x, context=None, mask=None): q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) b, _, _ = q.shape q, k, v = map( lambda t: t.unsqueeze(3) .reshape(b, t.shape[1], self.heads, self.dim_head) .permute(0, 2, 1, 3) .reshape(b * self.heads, t.shape[1], self.dim_head) .contiguous(), (q, k, v), ) # actually compute the attention, what we cannot get enough of out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) if exists(mask): raise NotImplementedError out = ( out.unsqueeze(0) .reshape(b, self.heads, out.shape[1], self.dim_head) .permute(0, 2, 1, 3) .reshape(b, out.shape[1], self.heads * self.dim_head) ) return self.to_out(out) class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, disable_self_attn=False): super().__init__() self.disable_self_attn = disable_self_attn self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, context_dim=context_dim if self.disable_self_attn else None) # is a self-attention if not self.disable_self_attn self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none self.norm1 = Fp32LayerNorm(dim) self.norm2 = Fp32LayerNorm(dim) self.norm3 = Fp32LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x ATTENTION_MODES = { "softmax": CrossAttention, # vanilla attention "softmax-xformers": MemoryEfficientCrossAttention, "softmax-flash": FlashAttention } def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) class Fp32LayerNorm(nn.LayerNorm): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def forward(self, x): return super().forward(x.float()).type(x.dtype) class AdaNorm(nn.Module): def __init__(self, dim): super().__init__() self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True) ) self.norm = Fp32LayerNorm(dim, elementwise_affine=False, eps=1e-6) def forward(self, x, c): # x is fp32, c is fp16 shift, scale = self.adaLN_modulation(c.float()).chunk(2, dim=1) # bf16 x = modulate(self.norm(x), shift, scale) # fp32 return x class BasicTransformerBlockLRM(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, \ checkpoint=True): super().__init__() attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" attn_mode = "softmax-flash" if FLASH_IS_AVAILABLE else attn_mode assert attn_mode in ATTENTION_MODES attn_cls = ATTENTION_MODES[attn_mode] self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ context_dim=context_dim) # cross-attn self.attn2 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ context_dim=None) # self-attn self.norm1 = Fp32LayerNorm(dim) self.norm2 = Fp32LayerNorm(dim) self.norm3 = Fp32LayerNorm(dim) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.checkpoint = checkpoint def forward(self, x, context=None, cam_emb=None): # (torch.float32, torch.float32, torch.bfloat16) return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None, cam_emb=None): x = self.attn1(self.norm1(x), context=context) + x # cross-attn x = self.attn2(self.norm2(x), context=None) + x # self-attn x = self.ff(self.norm3(x)) + x return x class ImgToTriplaneTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, query_dim, n_heads, d_head, depth=1, dropout=0., context_dim=None, triplane_size=64): super().__init__() self.transformer_blocks = nn.ModuleList([ BasicTransformerBlockLRM(query_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)]) self.norm = Fp32LayerNorm(query_dim, eps=1e-6) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) elif isinstance(module, nn.LayerNorm): if module.bias is not None: nn.init.constant_(module.bias, 0) if module.weight is not None: nn.init.constant_(module.weight, 1.0) self.apply(_basic_init) def forward(self, x, context=None, cam_emb=None): # note: if no context is given, cross-attention defaults to self-attention for block in self.transformer_blocks: x = block(x, context=context) x = self.norm(x) return x