import math import numpy as np def compute_extrinsic_matrix(elevation, azimuth, camera_distance): # Convert angles to radians elevation_rad = np.radians(elevation) azimuth_rad = np.radians(azimuth) R = np.array([ [np.cos(azimuth_rad), 0, -np.sin(azimuth_rad)], [0, 1, 0], [np.sin(azimuth_rad), 0, np.cos(azimuth_rad)], ], dtype=np.float32) R = R @ np.array([ [1, 0, 0], [0, np.cos(elevation_rad), -np.sin(elevation_rad)], [0, np.sin(elevation_rad), np.cos(elevation_rad)] ], dtype=np.float32) # Construct translation matrix T (3x1) T = np.array([[camera_distance], [0], [0]], dtype=np.float32) T = R @ T # Combined into a 4x4 transformation matrix extrinsic_matrix = np.vstack((np.hstack((R, T)), np.array([[0, 0, 0, 1]], dtype=np.float32))) return extrinsic_matrix def transform_camera_pose(im_pose, ori_pose, new_pose): T = new_pose @ ori_pose.T transformed_poses = [] for pose in im_pose: transformed_pose = T @ pose transformed_poses.append(transformed_pose) return transformed_poses def compute_fov(intrinsic_matrix): # Get the focal length value in the internal parameter matrix fx = intrinsic_matrix[0, 0] fy = intrinsic_matrix[1, 1] h, w = intrinsic_matrix[0,2]*2, intrinsic_matrix[1,2]*2 # Calculate horizontal and vertical FOV values fov_x = 2 * math.atan(w / (2 * fx)) * 180 / math.pi fov_y = 2 * math.atan(h / (2 * fy)) * 180 / math.pi return fov_x, fov_y def rotation_matrix_to_quaternion(rotation_matrix): rot = Rotation.from_matrix(rotation_matrix) quaternion = rot.as_quat() return quaternion def quaternion_to_rotation_matrix(quaternion): rot = Rotation.from_quat(quaternion) rotation_matrix = rot.as_matrix() return rotation_matrix def remap_points(img_size, match, size=512): H, W, _ = img_size S = max(W, H) new_W = int(round(W * size / S)) new_H = int(round(H * size / S)) cx, cy = new_W // 2, new_H // 2 # Calculate the coordinates of the transformed image center point halfw, halfh = ((2 * cx) // 16) * 8, ((2 * cy) // 16) * 8 dw, dh = cx - halfw, cy - halfh # store point coordinates mapped back to the original image new_match = np.zeros_like(match) # Map the transformed point coordinates back to the original image new_match[:, 0] = (match[:, 0] + dw) / new_W * W new_match[:, 1] = (match[:, 1] + dh) / new_H * H #print(dw,new_W,W,dh,new_H,H) return new_match