#!/usr/bin/env python3 # Copyright (C) 2024-present Naver Corporation. All rights reserved. # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). # # -------------------------------------------------------- # Script to pre-process the CO3D dataset. # Usage: # python3 datasets_preprocess/preprocess_co3d.py --co3d_dir /path/to/co3d # -------------------------------------------------------- import argparse import random import gzip import json import os import os.path as osp import torch import PIL.Image import numpy as np import cv2 from tqdm.auto import tqdm import matplotlib.pyplot as plt import path_to_root # noqa import dust3r.datasets.utils.cropping as cropping # noqa CATEGORIES = [ "apple", "backpack", "ball", "banana", "baseballbat", "baseballglove", "bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot", "cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag", "hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave", "motorcycle", "mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich", "skateboard", "stopsign", "suitcase", "teddybear", "toaster", "toilet", "toybus", "toyplane", "toytrain", "toytruck", "tv", "umbrella", "vase", "wineglass", ] CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)} # for seeding SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"])) def get_parser(): parser = argparse.ArgumentParser() parser.add_argument("--category", type=str, default=None) parser.add_argument('--single_sequence_subset', default=False, action='store_true', help="prepare the single_sequence_subset instead.") parser.add_argument("--output_dir", type=str, default="data/co3d_processed") parser.add_argument("--co3d_dir", type=str, required=True) parser.add_argument("--num_sequences_per_object", type=int, default=50) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.") parser.add_argument("--img_size", type=int, default=512, help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size")) return parser def convert_ndc_to_pinhole(focal_length, principal_point, image_size): focal_length = np.array(focal_length) principal_point = np.array(principal_point) image_size_wh = np.array([image_size[1], image_size[0]]) half_image_size = image_size_wh / 2 rescale = half_image_size.min() principal_point_px = half_image_size - principal_point * rescale focal_length_px = focal_length * rescale fx, fy = focal_length_px[0], focal_length_px[1] cx, cy = principal_point_px[0], principal_point_px[1] K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32) return K def opencv_from_cameras_projection(R, T, focal, p0, image_size): R = torch.from_numpy(R)[None, :, :] T = torch.from_numpy(T)[None, :] focal = torch.from_numpy(focal)[None, :] p0 = torch.from_numpy(p0)[None, :] image_size = torch.from_numpy(image_size)[None, :] R_pytorch3d = R.clone() T_pytorch3d = T.clone() focal_pytorch3d = focal p0_pytorch3d = p0 T_pytorch3d[:, :2] *= -1 R_pytorch3d[:, :, :2] *= -1 tvec = T_pytorch3d R = R_pytorch3d.permute(0, 2, 1) # Retype the image_size correctly and flip to width, height. image_size_wh = image_size.to(R).flip(dims=(1,)) # NDC to screen conversion. scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 scale = scale.expand(-1, 2) c0 = image_size_wh / 2.0 principal_point = -p0_pytorch3d * scale + c0 focal_length = focal_pytorch3d * scale camera_matrix = torch.zeros_like(R) camera_matrix[:, :2, 2] = principal_point camera_matrix[:, 2, 2] = 1.0 camera_matrix[:, 0, 0] = focal_length[:, 0] camera_matrix[:, 1, 1] = focal_length[:, 1] return R[0], tvec[0], camera_matrix[0] def get_set_list(category_dir, split, is_single_sequence_subset=False): listfiles = os.listdir(osp.join(category_dir, "set_lists")) if is_single_sequence_subset: # not all objects have manyview_dev subset_list_files = [f for f in listfiles if "manyview_dev" in f] else: subset_list_files = [f for f in listfiles if f"fewview_train" in f] sequences_all = [] for subset_list_file in subset_list_files: with open(osp.join(category_dir, "set_lists", subset_list_file)) as f: subset_lists_data = json.load(f) sequences_all.extend(subset_lists_data[split]) return sequences_all def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object, seed, is_single_sequence_subset=False): random.seed(seed) category_dir = osp.join(co3d_dir, category) category_output_dir = osp.join(output_dir, category) sequences_all = get_set_list(category_dir, split, is_single_sequence_subset) sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all)) frame_file = osp.join(category_dir, "frame_annotations.jgz") sequence_file = osp.join(category_dir, "sequence_annotations.jgz") with gzip.open(frame_file, "r") as fin: frame_data = json.loads(fin.read()) with gzip.open(sequence_file, "r") as fin: sequence_data = json.loads(fin.read()) frame_data_processed = {} for f_data in frame_data: sequence_name = f_data["sequence_name"] frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data good_quality_sequences = set() for seq_data in sequence_data: if seq_data["viewpoint_quality_score"] > min_quality: good_quality_sequences.add(seq_data["sequence_name"]) sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences] if len(sequences_numbers) < max_num_sequences_per_object: selected_sequences_numbers = sequences_numbers else: selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object) selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers} sequences_all = [(seq_name, frame_number, filepath) for seq_name, frame_number, filepath in sequences_all if seq_name in selected_sequences_numbers_dict] for seq_name, frame_number, filepath in tqdm(sequences_all): frame_idx = int(filepath.split('/')[-1][5:-4]) selected_sequences_numbers_dict[seq_name].append(frame_idx) mask_path = filepath.replace("images", "masks").replace(".jpg", ".png") frame_data = frame_data_processed[seq_name][frame_number] focal_length = frame_data["viewpoint"]["focal_length"] principal_point = frame_data["viewpoint"]["principal_point"] image_size = frame_data["image"]["size"] K = convert_ndc_to_pinhole(focal_length, principal_point, image_size) R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]), np.array(frame_data["viewpoint"]["T"]), np.array(focal_length), np.array(principal_point), np.array(image_size)) frame_data = frame_data_processed[seq_name][frame_number] depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"]) assert frame_data["depth"]["scale_adjustment"] == 1.0 image_path = os.path.join(co3d_dir, filepath) mask_path_full = os.path.join(co3d_dir, mask_path) input_rgb_image = PIL.Image.open(image_path).convert('RGB') input_mask = plt.imread(mask_path_full) with PIL.Image.open(depth_path) as depth_pil: # the image is stored with 16-bit depth but PIL reads it as I (32 bit). # we cast it to uint16, then reinterpret as float16, then cast to float32 input_depthmap = ( np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) .astype(np.float32) .reshape((depth_pil.size[1], depth_pil.size[0]))) depth_mask = np.stack((input_depthmap, input_mask), axis=-1) H, W = input_depthmap.shape camera_intrinsics = camera_intrinsics.numpy() cx, cy = camera_intrinsics[:2, 2].round().astype(int) min_margin_x = min(cx, W - cx) min_margin_y = min(cy, H - cy) # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) l, t = cx - min_margin_x, cy - min_margin_y r, b = cx + min_margin_x, cy + min_margin_y crop_bbox = (l, t, r, b) input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap( input_rgb_image, depth_mask, camera_intrinsics, crop_bbox) # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) if max(output_resolution) < img_size: # let's put the max dimension to img_size scale_final = (img_size / max(H, W)) + 1e-8 output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap( input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution) input_depthmap = depth_mask[:, :, 0] input_mask = depth_mask[:, :, 1] # generate and adjust camera pose camera_pose = np.eye(4, dtype=np.float32) camera_pose[:3, :3] = R camera_pose[:3, 3] = tvec camera_pose = np.linalg.inv(camera_pose) # save crop images and depth, metadata save_img_path = os.path.join(output_dir, filepath) save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"]) save_mask_path = os.path.join(output_dir, mask_path) os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) input_rgb_image.save(save_img_path) scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16) cv2.imwrite(save_depth_path, scaled_depth_map) cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) save_meta_path = save_img_path.replace('jpg', 'npz') np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics, camera_pose=camera_pose, maximum_depth=np.max(input_depthmap)) return selected_sequences_numbers_dict if __name__ == "__main__": parser = get_parser() args = parser.parse_args() assert args.co3d_dir != args.output_dir if args.category is None: if args.single_sequence_subset: categories = SINGLE_SEQUENCE_CATEGORIES else: categories = CATEGORIES else: categories = [args.category] os.makedirs(args.output_dir, exist_ok=True) for split in ['train', 'test']: selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json') if os.path.isfile(selected_sequences_path): continue all_selected_sequences = {} for category in categories: category_output_dir = osp.join(args.output_dir, category) os.makedirs(category_output_dir, exist_ok=True) category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json') if os.path.isfile(category_selected_sequences_path): with open(category_selected_sequences_path, 'r') as fid: category_selected_sequences = json.load(fid) else: print(f"Processing {split} - category = {category}") category_selected_sequences = prepare_sequences( category=category, co3d_dir=args.co3d_dir, output_dir=args.output_dir, img_size=args.img_size, split=split, min_quality=args.min_quality, max_num_sequences_per_object=args.num_sequences_per_object, seed=args.seed + CATEGORIES_IDX[category], is_single_sequence_subset=args.single_sequence_subset ) with open(category_selected_sequences_path, 'w') as file: json.dump(category_selected_sequences, file) all_selected_sequences[category] = category_selected_sequences with open(selected_sequences_path, 'w') as file: json.dump(all_selected_sequences, file)