import os import cv2 import numpy as np from skimage.metrics import hausdorff_distance from matplotlib import pyplot as plt def get_input_imgs_path(input_data_dir): path = {} names = ['000', 'ori_000'] for name in names: jpg_path = os.path.join(input_data_dir, f"{name}.jpg") png_path = os.path.join(input_data_dir, f"{name}.png") if os.path.exists(jpg_path): path[name] = jpg_path elif os.path.exists(png_path): path[name] = png_path return path def rgba_to_rgb(image, bg_color=[255, 255, 255]): if image.shape[-1] == 3: return image rgba = image.astype(float) rgb = rgba[:, :, :3].copy() alpha = rgba[:, :, 3] / 255.0 bg = np.ones((image.shape[0], image.shape[1], 3), dtype=np.float32) bg = bg * np.array(bg_color, dtype=np.float32) rgb = rgb * alpha[:, :, np.newaxis] + bg * (1 - alpha[:, :, np.newaxis]) rgb = rgb.astype(np.uint8) return rgb def resize_with_aspect_ratio(image1, image2, pad_value=[255, 255, 255]): aspect_ratio1 = float(image1.shape[1]) / float(image1.shape[0]) aspect_ratio2 = float(image2.shape[1]) / float(image2.shape[0]) top_pad, bottom_pad, left_pad, right_pad = 0, 0, 0, 0 if aspect_ratio1 < aspect_ratio2: new_width = (aspect_ratio2 * image1.shape[0]) right_pad = left_pad = int((new_width - image1.shape[1]) / 2) else: new_height = (image1.shape[1] / aspect_ratio2) bottom_pad = top_pad = int((new_height - image1.shape[0]) / 2) image1_padded = cv2.copyMakeBorder( image1, top_pad, bottom_pad, left_pad, right_pad, cv2.BORDER_CONSTANT, value=pad_value ) return image1_padded def estimate_img_mask(image): # to gray gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # segment # _, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) # mask_otsu = thresh.astype(bool) # thresh_gray = 240 edges = cv2.Canny(gray, 20, 50) kernel = np.ones((3, 3), np.uint8) edges_dilated = cv2.dilate(edges, kernel, iterations=1) contours, _ = cv2.findContours(edges_dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) mask = np.zeros_like(gray, dtype=np.uint8) cv2.drawContours(mask, contours, -1, 255, thickness=cv2.FILLED) mask = mask.astype(bool) return mask def compute_img_diff(img1, img2, matches1, matches1_from_2, vis=False): scale = 0.125 gray_trunc_thres = 25 / 255.0 # Match if matches1.shape[0] > 0: match_scale = np.max(np.ptp(matches1, axis=-1)) match_dists = np.sqrt(np.sum((matches1 - matches1_from_2) ** 2, axis=-1)) dist_threshold = match_scale * 0.01 match_num = np.sum(match_dists <= dist_threshold) match_rate = np.mean(match_dists <= dist_threshold) else: match_num = 0 match_rate = 0 # IOU img1_mask = estimate_img_mask(img1) img2_mask = estimate_img_mask(img2) img_intersection = (img1_mask == 1) & (img2_mask == 1) img_union = (img1_mask == 1) | (img2_mask == 1) intersection = np.sum(img_intersection == 1) union = np.sum(img_union == 1) mask_iou = intersection / union if union != 0 else 0 # Gray height, width = img1.shape[:2] img1_gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY) img2_gray = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) img1_gray = cv2.GaussianBlur(img1_gray, (7, 7), 0) img2_gray = cv2.GaussianBlur(img2_gray, (7, 7), 0) # Gray Diff img1_gray_small = cv2.resize(img1_gray, (int(width * scale), int(height * scale)), interpolation=cv2.INTER_LINEAR) / 255.0 img2_gray_small = cv2.resize(img2_gray, (int(width * scale), int(height * scale)), interpolation=cv2.INTER_LINEAR) / 255.0 img_gray_small_diff = np.abs(img1_gray_small - img2_gray_small) gray_diff = img_gray_small_diff.sum() / (union * scale) if union != 0 else 1 img_gray_small_diff_trunc = img_gray_small_diff.copy() img_gray_small_diff_trunc[img_gray_small_diff < gray_trunc_thres] = 0 gray_diff_trunc = img_gray_small_diff_trunc.sum() / (union * scale) if union != 0 else 1 # Edge img1_edge = cv2.Canny(img1_gray, 100, 200) img2_edge = cv2.Canny(img2_gray, 100, 200) bw_edges1 = (img1_edge > 0).astype(bool) bw_edges2 = (img2_edge > 0).astype(bool) hausdorff_dist = hausdorff_distance(bw_edges1, bw_edges2) if vis == True: fig, axs = plt.subplots(1, 4, figsize=(15, 5)) axs[0].imshow(img1_gray, cmap='gray') axs[0].set_title('Img1') axs[1].imshow(img2_gray, cmap='gray') axs[1].set_title('Img2') axs[2].imshow(img1_mask) axs[2].set_title('Mask1') axs[3].imshow(img2_mask) axs[3].set_title('Mask2') plt.show() plt.figure() mask_cmp = np.zeros((height, width, 3)) mask_cmp[img_intersection, 1] = 1 mask_cmp[img_union, 0] = 1 plt.imshow(mask_cmp) plt.show() fig, axs = plt.subplots(1, 4, figsize=(15, 5)) axs[0].imshow(img1_gray_small, cmap='gray') axs[0].set_title('Img1 Gray') axs[1].imshow(img2_gray_small, cmap='gray') axs[1].set_title('Img2 Gary') axs[2].imshow(img_gray_small_diff, cmap='gray') axs[2].set_title('diff') axs[3].imshow(img_gray_small_diff_trunc, cmap='gray') axs[3].set_title('diff_trunct') plt.show() fig, axs = plt.subplots(1, 2, figsize=(15, 5)) axs[0].imshow(img1_edge, cmap='gray') axs[0].set_title('img1_edge') axs[1].imshow(img2_edge, cmap='gray') axs[1].set_title('img2_edge') plt.show() info = {} info['match_num'] = match_num info['match_rate'] = match_rate info['mask_iou'] = mask_iou info['gray_diff'] = gray_diff info['gray_diff_trunc'] = gray_diff_trunc info['hausdorff_dist'] = hausdorff_dist return info def predict_match_success_human(info): match_num = info['match_num'] match_rate = info['match_rate'] mask_iou = info['mask_iou'] gray_diff = info['gray_diff'] gray_diff_trunc = info['gray_diff_trunc'] hausdorff_dist = info['hausdorff_dist'] if mask_iou > 0.95: return True if match_num < 20 or match_rate < 0.7: return False if mask_iou > 0.80 and gray_diff < 0.040 and gray_diff_trunc < 0.010: return True if mask_iou > 0.70 and gray_diff < 0.050 and gray_diff_trunc < 0.008: return True ''' if match_rate<0.70 or match_num<3000: return False if (mask_iou>0.85 and hausdorff_dist<20)or (gray_diff<0.015 and gray_diff_trunc<0.01) or match_rate>=0.90: return True ''' return False def predict_match_success(info, model=None): if model == None: return predict_match_success_human(info) else: feat_name = ['match_num', 'match_rate', 'mask_iou', 'gray_diff', 'gray_diff_trunc', 'hausdorff_dist'] features = [info[f] for f in feat_name] pred = model.predict([features])[0] return pred >= 0.5