import os from typing import List, Optional from PIL import Image import imageio import time import torch from pytorch3d.io import load_objs_as_meshes, load_obj, save_obj from pytorch3d.ops import interpolate_face_attributes from pytorch3d.common.datatypes import Device from pytorch3d.structures import Meshes from pytorch3d.vis.texture_vis import texturesuv_image_matplotlib from pytorch3d.renderer import ( look_at_view_transform, FoVPerspectiveCameras, PointLights, DirectionalLights, AmbientLights, Materials, RasterizationSettings, MeshRenderer, MeshRasterizer, SoftPhongShader, TexturesUV, TexturesVertex, camera_position_from_spherical_angles, BlendParams, ) def render_func( obj_filename, elev=0, azim=None, resolution=512, gif_dst_path='', n_views=120, fps=30, device="cuda:0", rgb=False ): ''' obj_filename: path to obj file gif_dst_path: if set a path, will render n_views frames, then save it to a gif file if not set, will render single frame, then return PIL.Image instance rgb: if set true, will convert result to rgb image/frame ''' # load mesh mesh = load_objs_as_meshes([obj_filename], device=device) meshes = mesh.extend(n_views) if azim is None: elev = torch.linspace(elev, elev, n_views+1)[:-1] azim = torch.linspace(0, 360, n_views+1)[:-1] # prepare R,T then compute cameras R, T = look_at_view_transform(dist=1.5, elev=elev, azim=azim) cameras = FoVPerspectiveCameras(device=device, R=R, T=T, fov=49.1) # init pytorch3d renderer instance renderer = MeshRenderer( rasterizer=MeshRasterizer( cameras=cameras, raster_settings=RasterizationSettings( image_size=resolution, blur_radius=0.0, faces_per_pixel=1, ), ), shader=SoftPhongShader( device=device, cameras=cameras, lights=AmbientLights(device=device), blend_params=BlendParams(background_color=(1.0, 1.0, 1.0)), ) ) images = renderer(meshes) if gif_dst_path != '': with imageio.get_writer(uri=gif_dst_path, mode='I', duration=1. / fps * 1000, loop=0) as writer: for i in range(n_views): frame = images[i, ..., :3] if rgb else images[i, ...] frame = Image.fromarray((frame.cpu().squeeze(0) * 255).numpy().astype("uint8")) writer.append_data(frame) frame = images[..., :3] if rgb else images frames = [Image.fromarray((fra.cpu().squeeze(0) * 255).numpy().astype("uint8")) for fra in frame] return frames