# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os, sys sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") import time import torch import random import numpy as np from PIL import Image from einops import rearrange from PIL import Image, ImageSequence from infer.utils import seed_everything, timing_decorator, auto_amp_inference from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool from mvd.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline from mvd.hunyuan3d_mvd_lite_pipeline import Hunyuan3d_MVD_Lite_Pipeline def save_gif(pils, save_path, df=False): # save a list of PIL.Image to gif spf = 4000 / len(pils) os.makedirs(os.path.dirname(save_path), exist_ok=True) pils[0].save(save_path, format="GIF", save_all=True, append_images=pils[1:], duration=spf, loop=0) return save_path class Image2Views(): def __init__(self, device="cuda:0", use_lite=False, save_memory=False, std_pretrain='./weights/mvd_std', lite_pretrain='./weights/mvd_lite' ): self.device = device if use_lite: print("loading", lite_pretrain) self.pipe = Hunyuan3d_MVD_Lite_Pipeline.from_pretrained( lite_pretrain, torch_dtype = torch.float16, use_safetensors = True, ) else: print("loadding", std_pretrain) self.pipe = HunYuan3D_MVD_Std_Pipeline.from_pretrained( std_pretrain, torch_dtype = torch.float16, use_safetensors = True, ) self.pipe = self.pipe if save_memory else self.pipe.to(device) self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1] self.save_memory = save_memory set_parameter_grad_false(self.pipe.unet) print('image2views unet model', get_parameter_number(self.pipe.unet)) @torch.no_grad() @timing_decorator("image to views") @auto_amp_inference def __call__(self, *args, **kwargs): if self.save_memory: self.pipe = self.pipe.to(self.device) torch.cuda.empty_cache() res = self.call(*args, **kwargs) self.pipe = self.pipe.to("cpu") else: res = self.call(*args, **kwargs) torch.cuda.empty_cache() return res def call(self, pil_img, seed=0, steps=50, guidance_scale=2.0): seed_everything(seed) generator = torch.Generator(device=self.device) res_img = self.pipe(pil_img, num_inference_steps=steps, guidance_scale=guidance_scale, generat=generator).images show_image = rearrange(np.asarray(res_img[0], dtype=np.uint8), '(n h) (m w) c -> (n m) h w c', n=3, m=2) pils = [res_img[1]]+[Image.fromarray(show_image[idx]) for idx in self.order] torch.cuda.empty_cache() return res_img, pils if __name__ == "__main__": import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--rgba_path", type=str, required=True) parser.add_argument("--output_views_path", type=str, required=True) parser.add_argument("--output_cond_path", type=str, required=True) parser.add_argument("--seed", default=0, type=int) parser.add_argument("--steps", default=50, type=int) parser.add_argument("--device", default="cuda:0", type=str) parser.add_argument("--use_lite", default='false', type=str) return parser.parse_args() args = get_args() args.use_lite = str_to_bool(args.use_lite) rgba_pil = Image.open(args.rgba_path) assert rgba_pil.mode == "RGBA", "rgba_pil must be RGBA mode" model = Image2Views(device=args.device, use_lite=args.use_lite) (views_pil, cond), _ = model(rgba_pil, seed=args.seed, steps=args.steps) views_pil.save(args.output_views_path) cond.save(args.output_cond_path)