# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import os, sys sys.path.insert(0, f"{os.path.dirname(os.path.dirname(os.path.abspath(__file__)))}") import time import torch import random import numpy as np from PIL import Image from einops import rearrange from PIL import Image, ImageSequence from infer.utils import seed_everything, timing_decorator, auto_amp_inference from infer.utils import get_parameter_number, set_parameter_grad_false, str_to_bool from svrm.predictor import MV23DPredictor class Views2Mesh(): def __init__(self, mv23d_cfg_path, mv23d_ckt_path, device="cuda:0", use_lite=False, save_memory=False): ''' mv23d_cfg_path: config yaml file mv23d_ckt_path: path to ckpt use_lite: lite version save_memory: cpu auto ''' self.device = device self.save_memory = save_memory self.mv23d_predictor = MV23DPredictor( mv23d_ckt_path, mv23d_cfg_path, device = "cpu" if save_memory else device ) self.mv23d_predictor.model.eval() self.order = [0, 1, 2, 3, 4, 5] if use_lite else [0, 2, 4, 5, 3, 1] set_parameter_grad_false(self.mv23d_predictor.model) print('view2mesh model', get_parameter_number(self.mv23d_predictor.model)) @torch.no_grad() @timing_decorator("views to mesh") @auto_amp_inference def __call__(self, *args, **kwargs): if self.save_memory: self.mv23d_predictor.model = self.mv23d_predictor.model.to(self.device) torch.cuda.empty_cache() res = self.call(*args, **kwargs) self.mv23d_predictor.model = self.mv23d_predictor.model.to("cpu") else: res = self.call(*args, **kwargs) torch.cuda.empty_cache() return res def call( self, views_pil=None, cond_pil=None, gif_pil=None, seed=0, target_face_count = 10000, do_texture_mapping = True, save_folder='./outputs/test' ): ''' can set views_pil, cond_pil simutaously or set gif_pil only seed: int target_face_count: int save_folder: path to save mesh files ''' save_dir = save_folder os.makedirs(save_dir, exist_ok=True) if views_pil is not None and cond_pil is not None: show_image = rearrange(np.asarray(views_pil, dtype=np.uint8), '(n h) (m w) c -> (n m) h w c', n=3, m=2) views = [Image.fromarray(show_image[idx]) for idx in self.order] image_list = [cond_pil]+ views image_list = [img.convert('RGB') for img in image_list] elif gif_pil is not None: image_list = [img.convert('RGB') for img in ImageSequence.Iterator(gif_pil)] image_input = image_list[0] image_list = image_list[1:] + image_list[:1] seed_everything(seed) self.mv23d_predictor.predict( image_list, save_dir = save_dir, image_input = image_input, target_face_count = target_face_count, do_texture_mapping = do_texture_mapping ) torch.cuda.empty_cache() if __name__ == "__main__": import argparse def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--views_path", type=str, required=True) parser.add_argument("--cond_path", type=str, required=True) parser.add_argument("--save_folder", default="./outputs/test/", type=str) parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str) parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str) parser.add_argument("--max_faces_num", default=90000, type=int, help="max num of face, suggest 90000 for effect, 10000 for speed") parser.add_argument("--device", default="cuda:0", type=str) parser.add_argument("--use_lite", default='false', type=str) parser.add_argument("--do_texture_mapping", default='false', type=str) return parser.parse_args() args = get_args() args.use_lite = str_to_bool(args.use_lite) args.do_texture_mapping = str_to_bool(args.do_texture_mapping) views = Image.open(args.views_path) cond = Image.open(args.cond_path) views_to_mesh_model = Views2Mesh( args.mv23d_cfg_path, args.mv23d_ckt_path, device = args.device, use_lite = args.use_lite ) views_to_mesh_model( views, cond, 0, target_face_count = args.max_faces_num, save_folder = args.save_folder, do_texture_mapping = args.do_texture_mapping )