Spaces:
Runtime error
Runtime error
File size: 47,772 Bytes
0506f5f d3ba590 0506f5f d3ba590 b279245 d3ba590 b279245 d3ba590 d3718f9 b279245 d3718f9 d3ba590 b279245 d3ba590 d3718f9 b279245 d3718f9 d3ba590 b279245 d3ba590 77aba26 d3ba590 77aba26 e50ddf3 1180b1f d3ba590 0506f5f d3ba590 b279245 d3ba590 b279245 d3ba590 b279245 d3ba590 0506f5f d3ba590 0506f5f d3ba590 0506f5f d3ba590 0506f5f d3ba590 0506f5f d3ba590 b279245 d3ba590 0506f5f d3ba590 0506f5f d3ba590 0506f5f a987cc7 d3ba590 0506f5f d3ba590 0506f5f d3ba590 0506f5f d3ba590 b279245 d3ba590 b279245 d3ba590 b279245 d3ba590 b279245 d3ba590 b279245 cae655c d3ba590 0506f5f d3ba590 b279245 d3ba590 d3718f9 b279245 d3718f9 b279245 d3718f9 d3ba590 0506f5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 |
from datetime import datetime
import os
import uuid
import openai
import requests
import streamlit as st
from azure.cosmos import ContainerProxy, CosmosClient
from bs4 import BeautifulSoup, NavigableString
from dotenv import load_dotenv
from st_copy_to_clipboard import st_copy_to_clipboard
from pytrends.request import TrendReq
import pytz
import xml.etree.ElementTree as ET
import re
load_dotenv()
st.set_page_config(initial_sidebar_state="collapsed")
def get_related_studies(article: str):
with st.spinner("Extrahiere Studien..."):
url = f'https://serpapi.com/search.json?engine=google_scholar&api_key={os.getenv("SERP_API_KEY")}&as_ylo=2018&q='
url += extract_scholar_query(article).replace('"', "")
try:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
if data.get("organic_results"):
results = []
for result in data["organic_results"]:
if not result.get("title"):
continue
if not result.get("link"):
continue
results.append(
{
"title": result["title"],
"link": result["link"],
}
)
st.session_state["studie_links"] = results
else:
st.session_state["studie_links"] = []
else:
st.session_state["studie_links"] = []
except Exception as e:
print(f"Fehler beim extrahieren der Studien: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
def get_takeaways(article: str):
openai.api_key = os.environ.get("OPEN_API_KEY")
openai.api_base = os.environ.get("OPEN_API_BASE")
openai.api_type = os.environ.get("OPEN_API_TYPE")
openai.api_version = os.environ.get("OPEN_API_VERSION")
takeaway_query = os.environ.get("takeaway")
with st.spinner("Creating Takeaways"):
try:
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.2,
messages=[
{
"role": "system",
"content": f" The article you have written is as follows: {article}.",
},
{
"role": "system",
"content": f"Schreibe mir zu diesen Artikel Key Takeaways nach folgenden Regeln {takeaway_query}.",
},
],
)
st.session_state["takeaways"] = res["choices"][0]["message"]["content"]
except Exception as e:
print(f"Fehler beim extrahieren der Query: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
def get_faq(article: str):
openai.api_key = os.environ.get("OPEN_API_KEY")
openai.api_base = os.environ.get("OPEN_API_BASE")
openai.api_type = os.environ.get("OPEN_API_TYPE")
openai.api_version = os.environ.get("OPEN_API_VERSION")
faq_query = os.environ.get("faq")
with st.spinner("Creating FAQ"):
try:
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.2,
messages=[
{
"role": "system",
"content": f" The article you have written is as follows: {article}.",
},
{
"role": "system",
"content": f"Schreibe mir zu diesen Artikel Frequently Asked Questions nach folgenden Regeln {faq_query}.",
},
],
)
st.session_state["faq"] = res["choices"][0]["message"]["content"]
except Exception as e:
print(f"Fehler beim extrahieren der Query: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
def extract_scholar_query(article: str):
openai.api_key = os.environ.get("OPEN_API_KEY")
openai.api_base = os.environ.get("OPEN_API_BASE")
openai.api_type = os.environ.get("OPEN_API_TYPE")
openai.api_version = os.environ.get("OPEN_API_VERSION")
try:
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.2,
messages=[
{
"role": "system",
"content": f"You are a professional journalist whose task is to find related studies based on an article you have written. Please write a query that you would use to search for related studies on Google Scholar. Please make sure that the query is specific enough and cotains a maximum of 4 words. Only include one query in your output. Do not write multiple querys with an AND or OR. The article you have written is as follows: {article}.",
}
],
)
return res["choices"][0]["message"]["content"]
except Exception as e:
print(f"Fehler beim extrahieren der Query: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
return ""
def create_article(length_option, articles, params, web_page_option):
if length_option == "Kurz":
length = os.environ.get("SHORT_LENGTH")
elif length_option == "Mittel":
length = os.environ.get("MEDIUM_LENGTH")
elif length_option == "Lang":
length = os.environ.get("LONG_LENGTH")
elif length_option == "SEO":
length = os.environ.get("SEO_LENGTH")
elif length_option == "SEO Plus":
length = os.environ.get("SEO_PLUS_LENGTH")
openai.api_key = os.environ.get("OPEN_API_KEY")
openai.api_base = os.environ.get("OPEN_API_BASE")
openai.api_type = os.environ.get("OPEN_API_TYPE")
openai.api_version = os.environ.get("OPEN_API_VERSION")
if web_page_option == "Boulevard":
writing_style = os.environ.get("WRITING_STYLE_HEUTE")
elif web_page_option == "Health Blog":
writing_style = os.environ.get("WRITING_STYLE_GESUND")
elif web_page_option == "Newspaper":
writing_style = os.environ.get("WRITING_STYLE_NEWSPAPER")
elif web_page_option == "Tech/Lifestyle Blog":
writing_style = os.environ.get("WRITING_STYLE_TECH_BLOG")
elif web_page_option == "Public Relations":
writing_style = os.environ.get("WRITING_STYLE_PR")
elif web_page_option == "Sales":
writing_style = os.environ.get("WRITING_STYLE_SALES")
elif web_page_option == "Lifestyle Blog":
writing_style = os.environ.get("WRITING_STYLE_LIFESTYLE")
try:
if len(articles) > 0:
article_string = "; ".join(
f"Artikel {index + 1}: {artikel}"
for index, artikel in enumerate(articles)
)
messages = [
{
"role": "system",
"content": f"You are a professional journalist whose task is to write your own article based on one or more articles. This article should combine the content of the original articles, but have its own writing style, which is as follows: {writing_style} Do not use unusual phrases or neologisms from the original articles.",
},
{"role": "system", "content": f"Source articles: {article_string}"},
{
"role": "system",
"content": f"Please also note the following instructions defined by the user: {params}",
},
{
"role": "system",
"content": f" It is very important that the length of your article you generate should be {length} words long.",
},
{
"role": "system",
"content": "Schreibe den Artikel immer in deutscher Sprache.",
},
]
else:
messages = [
{
"role": "system",
"content": f"You are a professional journalist whose task is to write an article based on your own notes. This article should be written in the following writing style: {writing_style} .It is important that the length of your article should be {length} words long.",
},
{
"role": "system",
"content": f"Please write the article based on the following user input: {params}",
},
{
"role": "system",
"content": "Schreibe den Artikel immer in deutscher Sprache.",
},
]
res = openai.ChatCompletion.create(
engine="gpt-35-16k",
temperature=0.4,
max_tokens=8000,
messages=messages,
)
return res["choices"][0]["message"]["content"]
except Exception as e:
print(f"Fehler beim erstellen des artikels: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
def create_headline(article, web_page_option):
openai.api_key = os.environ.get("OPEN_API_KEY")
openai.api_base = os.environ.get("OPEN_API_BASE")
openai.api_type = os.environ.get("OPEN_API_TYPE")
openai.api_version = os.environ.get("OPEN_API_VERSION")
if web_page_option == "Boulevard":
writing_style = os.environ.get("WRITING_STYLE_HEUTE")
else:
writing_style = os.environ.get("WRITING_STYLE_GESUND")
try:
res = openai.ChatCompletion.create(
engine="gpt-4-1106",
temperature=0.4,
messages=[
{
"role": "system",
"content": f"You are a professional journalist and have the task of generating a headline for an article you have written. I will give you the writing style that was used to create the article as info. Writing style: {writing_style} The headline should be as short as possible, but still capture the essence of the article. It should be a maximum of 10 words long",
},
{"role": "system", "content": f"Source article: {article}"},
{
"role": "system",
"content": "Schreibe die Headline immer in deutscher Sprache.",
},
],
)
return res["choices"][0]["message"]["content"]
except Exception as e:
print(f"Fehler beim erstellen der headline: {str(e)}")
st.error(f"Something went wrong: {str(e)}", icon="🚨")
def extract_text_from_element(element):
# Initialisiere einen leeren Textstring
text_content = ""
# Überprüfe, ob das Element ein <p>, <ul> oder <ol>-Tag ist
if element.name in ["p", "ul", "ol"]:
# Extrahiere den Text des Tags und füge ihn zum Textstring hinzu
text_content += element.get_text() + "\n"
# Überprüfe, ob das Element ein Tag mit Kindern ist (kein Textknoten)
if not isinstance(element, NavigableString):
# Rekursiv durch jedes Child-Element gehen und den Text hinzufügen
for child in element.children:
text_content += extract_text_from_element(child)
return text_content
def get_article_summary(article: str) -> str:
try:
response = requests.post(
os.environ.get("SUMMARY_API"),
headers={
"Content-Type": "application/json",
"Authorization": "Bearer " + os.environ.get("SUMMARY_API_KEY"),
"azureml-model-deployment": "heute-summary-api",
},
data={"article": article},
)
response.raise_for_status()
return response.json()["summary"]
except Exception as e:
print(f"Fehler beim erstellen der Zusammenfassung: {str(e)}")
return ""
def extract_article(url):
# Webseite herunterladen
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
response = requests.get(url, headers=headers)
# Überprüfen, ob die Anfrage erfolgreich war (Status-Code 200)
if response.status_code == 200:
# HTML-Inhalt parsen
soup = BeautifulSoup(response.text, "html.parser")
# Finden Sie das <article>-Tag (nehmen Sie an, dass es eins gibt)
article_tag = soup.find("article")
if article_tag:
# Starte die Rekursion für jedes Child-Element des <article>-Tags
extracted_text = extract_text_from_element(article_tag)
stripped_text = filter_empty_lines(extracted_text)
return stripped_text
else:
print("Kein <article>-Tag gefunden.")
return None
else:
# Falls die Anfrage nicht erfolgreich war, eine Fehlermeldung ausgeben
print(f"Fehler: {response.status_code}")
return None
def filter_empty_lines(text):
# Teile den Text in Zeilen auf
lines = text.split("\n")
# Filtere leere Zeilen heraus
non_empty_lines = filter(lambda line: line.strip() != "", lines)
# Verbinde die nicht leeren Zeilen zu einem String
filtered_text = "\n".join(non_empty_lines)
return filtered_text
def extract_article_links(**kwargs):
# print(len(kwargs["links"]))
with st.spinner("Extrahiere..."):
results = []
for link in kwargs["links"]:
results.append(extract_article(link))
st.session_state["extracted_articles"] = results
if st.session_state["process_step"] < 1:
st.session_state["process_step"] += 1
st.session_state["selected_page"] = 1
def extract_article_links_for_heading(**kwargs):
article = extract_article(kwargs["link"])
def finalize_articles():
final_articles = []
for i in range(len(st.session_state["extracted_articles"])):
final_articles.append(st.session_state["final_article_" + str(i + 1)])
st.session_state["final_articles"] = final_articles
if st.session_state["process_step"] < 2:
st.session_state["process_step"] += 1
st.session_state["selected_page"] += 1
def increase_page():
if st.session_state["selected_page"] <= st.session_state["process_step"]:
st.session_state["selected_page"] += 1
def decrease_page():
if st.session_state["selected_page"] > 0:
st.session_state["selected_page"] -= 1
def on_click_handler_generate_article(**kwargs):
with st.spinner("Generiere Artikel..."):
created_article = create_article(
kwargs["length_option"],
kwargs["final_articles"],
kwargs["add_info"],
kwargs["webpage_option"],
)
headline = create_headline(created_article, kwargs["webpage_option"])
print(headline)
print(created_article)
db_analytics_item = {
"id": str(uuid.uuid4()),
"oparation": "article_generation",
"timestamp": str(datetime.now()),
}
client: ContainerProxy = st.session_state["db_container"]
client.create_item(body=db_analytics_item)
st.session_state["generated_article"] = created_article
st.session_state["generated_headline"] = headline
st.session_state["article_summary"] = get_article_summary(created_article)
if st.session_state["process_step"] < 3:
st.session_state["process_step"] += 1
st.session_state["selected_page"] += 1
def on_click_handler_generate_generate_article_keywords(**kwargs):
with st.spinner("Generiere Artikel..."):
created_article = create_article(
kwargs["length_option"],
"",
kwargs["artikel_input"],
kwargs["webpage_option"],
)
headline = create_headline(created_article, kwargs["webpage_option"])
summary = get_article_summary(created_article)
db_analytics_item = {
"id": str(uuid.uuid4()),
"oparation": "article_generation",
"timestamp": str(datetime.now()),
}
client: ContainerProxy = st.session_state["db_container"]
client.create_item(body=db_analytics_item)
st.session_state["generated_article"] = created_article
st.session_state["generated_headline"] = headline
st.session_state["article_summary"] = summary
def reset_session_state():
st.session_state["extracted_articles"] = []
st.session_state["article_links"] = []
st.session_state["final_articles"] = []
st.session_state["process_step"] = 0
st.session_state["selected_page"] = 0
st.session_state["generated_article"] = ""
st.session_state["studie_links"] = []
st.session_state["article_summary"] = ""
st.session_state["selection_content_trends_ressort"] = "Alle"
st.session_state["trends_realtime_all"] = {}
st.session_state["trends_today"] = {}
st.session_state["trends_yesterday"] = []
st.session_state["content_trend_articles_extracted"] = []
st.session_state["content_trend_article_links"] = []
st.session_state["webpage_option"] = "Boulevard"
## Trends
def fetch_trends(**kwargs):
timespan = kwargs["timespan"]
match timespan:
case "Echtzeit":
fetch_trends_realtime()
case "Heute":
fetch_trends_today()
case "Gestern":
fetch_trends_yesterday()
def fetch_trends_realtime():
pytrend = TrendReq(hl='de-AT', tz=360, timeout=(10,50))
for ressort_name, ressort_code in RESSORTS.items():
trends_realtime = pytrend.realtime_trending_searches(pn='AT', cat=ressort_code, count=5)
st.session_state["trends_realtime_" + ressort_code] = trends_realtime
def fetch_trends_today():
pytrend = TrendReq(hl='de-AT', tz=360, timeout=(10,50))
trends_today = pytrend.today_searches(pn="AT")
st.session_state["trends_today"] = trends_today
def fetch_trends_yesterday():
timezone = 'Europe/Vienna'
today = datetime.now(pytz.timezone(timezone)).date()
feed = ET.fromstring(requests.get(TRENDS_YESTERDAY_FEED_URL).content)
ns = {'ht': 'https://trends.google.de/trends/trendingsearches/daily'} # Define namespace
trends = []
for item in feed.findall(".//item"):
pubDate = datetime.strptime(item.find('pubDate').text, '%a, %d %b %Y %H:%M:%S %z').date()
# Filter: Überspringe, wenn pubDate heute ist
if pubDate == today:
continue
entry = {
'title': item.find('title').text,
'pubDate': item.find('pubDate').text,
'approx_traffic': item.find('ht:approx_traffic', ns).text if item.find('ht:approx_traffic', ns) is not None else None,
'news_items': []
}
for news_item in item.findall('ht:news_item', ns):
news_details = {
'title': news_item.find('ht:news_item_title', ns).text,
'snippet': news_item.find('ht:news_item_snippet', ns).text,
'url': news_item.find('ht:news_item_url', ns).text,
'source': news_item.find('ht:news_item_source', ns).text
}
entry['news_items'].append(news_details)
trends.append(entry)
st.session_state["trends_yesterday"] = trends
def render_trends_realtime(container):
ressort = st.session_state["selection_content_trends_ressort"]
trends_realtime = st.session_state["trends_realtime_" + RESSORTS[ressort]]
if trends_realtime == {}:
container.info(
body="Die Echtzeit-Trends wurden noch nicht geladen. Bitte verwende zunächst die Suche auf der rechten Seite!",
icon="ℹ️"
)
else:
container.selectbox(
label="Ressort auswählen",
options=RESSORTS,
placeholder="Bitte auswählen",
key="selection_content_trends_ressort",
)
for trend_count, trend in enumerate(trends_realtime, start=1):
with container.expander(f"{trend_count} -- {trend['title']}"):
articles = extract_article_details_realtime(trend['articles'])
for article_count, article in enumerate(articles, start=1):
key = f"selection_trends_realtime_{ressort}_{trend_count}_{article_count}"
st.checkbox(
f"{article_count} -- {article['articleTitle']} [Go To →]({article['url']})",
key=key,
disabled=disable_checkbox(f"selection_trends_realtime_{ressort}", key),
on_change=update_trend_article_list(key, article['url'])
)
def render_trends_today(container):
trends_today = st.session_state["trends_today"]
if trends_today == {}:
container.info(
body="Die heutigen Trends wurden noch nicht geladen. Bitte verwende zunächst die Suche auf der rechten Seite!",
icon="ℹ️"
)
for trend_count, trend in enumerate(trends_today, start=1):
with container.expander(f"{trend_count} -- {trend['title']['query']} | Generated Traffic: {trend['formattedTraffic']}"):
articles = extract_article_details_today(trend['articles'])
for article_count, article in enumerate(articles, start=1):
key = f"selection_trends_today_{trend_count}_{article_count}"
st.checkbox(
f"{article_count} -- {article['articleTitle']} [Go To →]({article['url']})",
key=key,
disabled=disable_checkbox("selection_trends_today", key),
on_change=update_trend_article_list(key, article['url'])
)
def render_trends_yesterday(container):
trends_yesterday = st.session_state["trends_yesterday"]
if trends_yesterday == []:
container.info(
body="Die gestrigen Trends wurden noch nicht geladen. Bitte verwende zunächst die Suche auf der rechten Seite!",
icon="ℹ️"
)
for trend_count, trend in enumerate(trends_yesterday, start=1):
with container.expander(f"{trend_count}• {trend['title']} | Generated Traffic: {trend['approx_traffic']}"):
st.write(f"Veröffentlichungsdatum : {trend['pubDate']}")
for article_count, article in enumerate(trend['news_items'], start=1):
key = f"selection_trends_yesterday_{trend_count}_{article_count}"
st.checkbox(
label=f"{article_count} -- {article['title']} [Go To →]({article['url']})",
key=key,
disabled=disable_checkbox("selection_trends_yesterday", key),
on_change=update_trend_article_list(key, article['url'])
)
def get_checkbox_states(pattern: str):
cb_states = {key: val for key, val in st.session_state.items() if re.search(string=key, pattern=pattern)}
return cb_states
def disable_checkbox(pattern: str, session_key: bool):
if session_key in list(st.session_state.keys()):
cb_states = get_checkbox_states(pattern)
return not cb_states[session_key] and not sum(list(cb_states.values())) < LINKS_MAX_CHECKED
return False
def update_trend_article_list(session_key, article_url):
if session_key in list(st.session_state.keys()):
if st.session_state[session_key]:
if article_url not in st.session_state["content_trend_article_links"]:
st.session_state["content_trend_article_links"].append(article_url)
else:
if article_url in st.session_state["content_trend_article_links"]:
st.session_state["content_trend_article_links"].remove(article_url)
## Content extraction
def extract_text_from_element(element):
# Initialisiere einen leeren Textstring
text_content = ""
# Überprüfe, ob das Element ein <p>, <ul> oder <ol>-Tag ist
if element.name in ["p", "ul", "ol"]:
# Extrahiere den Text des Tags und füge ihn zum Textstring hinzu
text_content += element.get_text() + "\n"
# Überprüfe, ob das Element ein Tag mit Kindern ist (kein Textknoten)
if not isinstance(element, NavigableString):
# Rekursiv durch jedes Child-Element gehen und den Text hinzufügen
for child in element.children:
text_content += extract_text_from_element(child)
return text_content
def filter_empty_lines(text):
# Teile den Text in Zeilen auf
lines = text.split("\n")
# Filtere leere Zeilen heraus
non_empty_lines = filter(lambda line: line.strip() != "", lines)
# Verbinde die nicht leeren Zeilen zu einem String
filtered_text = "\n".join(non_empty_lines)
return filtered_text
def extract_article(url):
# Webseite herunterladen
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
}
response = requests.get(url, headers=headers)
# Überprüfen, ob die Anfrage erfolgreich war (Status-Code 200)
if response.status_code == 200:
# HTML-Inhalt parsen
soup = BeautifulSoup(response.text, "html.parser")
# Finden Sie das <article>-Tag (nehmen Sie an, dass es eins gibt)
article_tag = soup.find("article")
if article_tag:
# Starte die Rekursion für jedes Child-Element des <article>-Tags
extracted_text = extract_text_from_element(article_tag)
stripped_text = filter_empty_lines(extracted_text)
return stripped_text
else:
print("Kein <article>-Tag gefunden.")
return None
else:
# Falls die Anfrage nicht erfolgreich war, eine Fehlermeldung ausgeben
print(f"Fehler: {response.status_code}")
return None
def extract_links(**kwargs):
with st.spinner("Extrahiere Informationen aus den Links..."):
results = []
for link in kwargs["links"]:
if link != '':
results.append(extract_article(link))
st.session_state[kwargs["key"]] = results
def extract_article_details_realtime(articles):
article_details = []
for article in articles:
article_detail = {
'url': article['url'],
'snippet': article['snippet'],
'articleTitle': article['articleTitle'],
'time': article['time']
}
article_details.append(article_detail)
return article_details
def extract_article_details_today(articles):
article_details = []
for article in articles:
article_detail = {
'url': article['url'],
'snippet': article['snippet'],
'articleTitle': article['title'],
}
article_details.append(article_detail)
return article_details
def get_final_articles():
final_trend_articles = [article_content for article_key, article_content in st.session_state.items() if re.search(string=article_key, pattern="content_trend_article_final")]
return final_trend_articles
if "extracted_articles" not in st.session_state:
st.session_state["extracted_articles"] = []
if "article_links" not in st.session_state:
print(st.query_params.get_all("article-links[]"))
if st.query_params.get_all("article-links[]"):
st.session_state["article_links"] = st.query_params.get_all("article-links[]")
else:
st.session_state["article_links"] = []
if "final_articles" not in st.session_state:
st.session_state["final_articles"] = []
if "process_step" not in st.session_state:
st.session_state["process_step"] = 0
if "selected_page" not in st.session_state:
st.session_state["selected_page"] = 0
if "generated_article" not in st.session_state:
st.session_state["generated_article"] = ""
if "generated_headline" not in st.session_state:
st.session_state["generated_headline"] = ""
if "webpage_option" not in st.session_state:
st.session_state["webpage_option"] = "Boulevard"
if "studie_links" not in st.session_state:
st.session_state["studie_links"] = []
if "db_container" not in st.session_state:
client = (
CosmosClient(os.environ["DB_ENDPOINT"], os.environ["DB_KEY"])
.get_database_client(os.environ["DB_NAME"])
.get_container_client("tina-analytics")
)
db_analytics_item = {
"id": str(uuid.uuid4()),
"oparation": "page_load",
"timestamp": str(datetime.now()),
}
client.create_item(body=db_analytics_item)
st.session_state["db_container"] = client
if "article_summary" not in st.session_state:
st.session_state["article_summary"] = ""
if "article_generation_mode" not in st.session_state:
st.session_state["article_generation_mode"] = "links"
if "selection_content_trends_ressort" not in st.session_state:
st.session_state["selection_content_trends_ressort"] = "Alle"
if "trends_realtime_all" not in st.session_state:
st.session_state["trends_realtime_all"] = {}
if "trends_today" not in st.session_state:
st.session_state["trends_today"] = {}
if "trends_yesterday" not in st.session_state:
st.session_state["trends_yesterday"] = []
if "content_trend_articles_extracted" not in st.session_state:
st.session_state["content_trend_articles_extracted"] = []
if "content_trend_article_links" not in st.session_state:
st.session_state["content_trend_article_links"] = []
PROCESS_STEPS = [
"Artikel Extraktion",
"Artikel Finalisierung",
"Artikel Generierung",
"Artikel Ausgabe",
]
RESSORTS = {
"Alle": "all",
"Gesundheit": "m",
"Business": "b",
"Headlines": "h",
"Sport": "s",
"Entertainment": "e",
"Technik": "t",
}
TRENDS_YESTERDAY_FEED_URL = 'https://trends.google.de/trends/trendingsearches/daily/rss?geo=AT'
LINKS_MAX_CHECKED = 3
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if hmac.compare_digest(st.session_state["password"], os.environ.get("PASSWORD")):
st.session_state["password_correct"] = True
del st.session_state["password"] # Don't store the password.
else:
st.session_state["password_correct"] = False
# Return True if the password is validated.
if st.session_state.get("password_correct", False):
return True
# Show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
if "password_correct" in st.session_state:
st.error("😕 Password incorrect")
return False
if not check_password():
st.stop() # Do not continue if check_password is not True.
col1, col2 = st.columns([2, 1])
col1.title("TINA")
col2.image("tensora_logo.png")
st.radio(
"Wähle den Schreibstil für Artikel aus",
[
"Boulevard",
"Health Blog",
"Newspaper",
"Tech/Lifestyle Blog",
"Public Relations",
"Sales",
"Lifestyle Blog",
],
key="webpage_option",
)
with st.sidebar:
st.title("Funktions Auswahl")
st.write("Hier kannst Du zwischen der Art der Artikelgenerierung wählen.")
st.button(
"Artikel Generierung mit Links",
key="article_gen_btn",
use_container_width=True,
on_click=lambda: st.session_state.update({"article_generation_mode": "links"}),
)
st.button(
"Artikel Generierung mit Stichpunkten",
key="headline_gen_btn",
use_container_width=True,
on_click=lambda: st.session_state.update({"article_generation_mode": "keywords"}),
)
st.button(
label="Artikelgenerierung mit Trendthemenanalyse",
key="trends_gen_btn",
use_container_width=True,
on_click=lambda: st.session_state.update({"article_generation_mode": "trends"})
)
if st.session_state["article_generation_mode"] == "links":
tab_col1, tab_col2, tab_col3, tab_col4 = st.columns([1, 1, 1, 1])
tab_col1.button(
"Artikel Extraktion",
key="tab1",
use_container_width=True,
on_click=lambda: st.session_state.update({"selected_page": 0}),
disabled=st.session_state["selected_page"] == 0,
)
tab_col2.button(
"Artikel Finalisierung",
key="tab2",
use_container_width=True,
on_click=lambda: st.session_state.update({"selected_page": 1}),
disabled=st.session_state["process_step"] < 1
or st.session_state["selected_page"] == 1,
)
tab_col3.button(
"Artikel Generierung",
key="tab3",
use_container_width=True,
on_click=lambda: st.session_state.update({"selected_page": 2}),
disabled=st.session_state["process_step"] < 2
or st.session_state["selected_page"] == 2,
)
tab_col4.button(
"Artikel Ausgabe",
key="tab4",
use_container_width=True,
on_click=lambda: st.session_state.update({"selected_page": 3}),
disabled=st.session_state["process_step"] < 3
or st.session_state["selected_page"] == 3,
)
nav_col1, nav_col2, nav_col3 = st.columns([1, 4, 1])
nav_col1.button(
"◀️",
key="nav1",
use_container_width=True,
on_click=decrease_page,
disabled=st.session_state["selected_page"] == 0,
)
nav_col2.markdown(
f"<div style='text-align: center;'>{PROCESS_STEPS[st.session_state['selected_page']]}</div>",
unsafe_allow_html=True,
)
nav_col3.button(
"▶️",
key="nav2",
use_container_width=True,
on_click=increase_page,
disabled=st.session_state["selected_page"] == st.session_state["process_step"],
)
if st.session_state["selected_page"] == 0:
st.write(
"Bitte gebe die Links der Artikel ein, welche Du extrahiert haben möchtest."
)
st.text_input(
"Gebe den "
+ str(len(st.session_state["article_links"]) + 1)
+ ". Link ein:",
key="link_input_" + str(len(st.session_state["article_links"]) + 1),
)
if st.session_state[
"link_input_" + str(len(st.session_state["article_links"]) + 1)
]:
st.session_state["article_links"].append(
st.session_state[
"link_input_" + str(len(st.session_state["article_links"]) + 1)
]
)
st.rerun()
for i in range(len(st.session_state["article_links"])):
st.write(f"Link nr. {i+1}:\n\n{st.session_state['article_links'][i]}")
if len(st.session_state["article_links"]) > 0:
try:
st.button(
"Extrahiere Artikel",
on_click=extract_article_links,
kwargs={"links": st.session_state["article_links"]},
)
except Exception as e:
print(f"Fehler beim extrahieren der artikel: {str(e)}")
st.error(
f"Du hast einen oder mehrere Links nicht in dem korrekten Format angegeben. Bitte Lade die Seite neu und benutze korrekte Links: {str(e)}",
icon="🚨",
)
elif st.session_state["selected_page"] == 1:
st.write(
"Hier kannst Du die extrahierten Artikel ansehen und bei Bedarf anpassen."
)
for i, article in enumerate(st.session_state["extracted_articles"]):
with st.expander(f"Artikel {i+1}"):
if article:
st.text_area(
"Editiere die Artikel, falls nötig:",
value=article,
key="final_article_" + str(i + 1),
height=500,
)
else:
st.info(
"Die Webseite des Artikels blockiert das automatische extrahieren von Artikeln. Wenn Du den Artikel dennoch benutzen möchtest, dann kannst Du diesen kopieren und einfügen.",
icon="ℹ️",
)
st.text_area(
"Füge den Artikel ein, falls nötig:",
value=article,
key="final_article_" + str(i + 1),
height=500,
)
st.button("Artikel finalisieren", on_click=finalize_articles)
elif st.session_state["selected_page"] == 2:
for i in range(len(st.session_state["final_articles"])):
if st.session_state["final_articles"][i]:
with st.expander("Artikel " + str(i + 1)):
st.write(st.session_state["final_articles"][i])
if len(st.session_state["final_articles"]) > 0:
st.write("Benutzte Artikel:")
for i, link in enumerate(st.session_state["article_links"]):
st.write(f"Link {i+1}: {link}")
st.text_area(
"Füge weitere Informationen für den Prompt hinzu, falls nötig:",
key="add_info",
)
st.write("Artikellänge")
st.radio(
"Optionen",
["Kurz", "Mittel", "Lang", "SEO", "SEO Plus"],
key="length_option",
)
st.button(
"Artikel generieren",
key="article_btn",
on_click=on_click_handler_generate_article,
kwargs={
"length_option": st.session_state["length_option"],
"final_articles": st.session_state["final_articles"],
"add_info": st.session_state["add_info"],
"webpage_option": st.session_state["webpage_option"],
},
)
elif st.session_state["selected_page"] == 3:
st.write(f"**{st.session_state['generated_headline']}**")
st.write(st.session_state["generated_article"])
st.write("**Zusammenfassung:**")
st.write(st.session_state["article_summary"])
st.write("Kopieren Sie den Artikel: ")
st_copy_to_clipboard(
st.session_state["generated_headline"]
+ "\n"
+ st.session_state["generated_article"]
)
if st.session_state["studie_links"]:
st.write("Hier sind einige Studien, die relevant sein könnten:")
for result in st.session_state["studie_links"]:
st.write(f"- [{result['title']}]({result['link']})")
else:
st.write("Keine relevanten Studien gefunden.")
if "takeaways" in st.session_state:
st.write("Hier sind einige Takeaways die wichtig sein könnten:")
st.write(st.session_state["takeaways"])
if "faq" in st.session_state:
st.write("Hier sind FAQs zu dem Artikel:")
st.write(st.session_state["faq"])
st.button(
"Relevante Studien finden",
on_click=get_related_studies,
args=(st.session_state["generated_article"],),
)
st.button(
"Key Takeaways generieren",
on_click=lambda: get_takeaways(st.session_state["generated_article"]),
)
st.button(
"FAQ generieren",
on_click=lambda: get_faq(st.session_state["generated_article"]),
)
st.button(
"Neuen Artikel generieren", key="reset_btn", on_click=reset_session_state
)
if st.session_state["article_generation_mode"] == "keywords":
st.write(
"Bitte trage die Stichpunkte ein, die Du in den Artikel einbauen möchtest. Der Textinput ist essenziell für die Generierung des Artikels."
)
st.text_area(label="Artikel input:", key="keyword_article_input")
st.write("Artikellänge")
st.radio(
"Optionen", ["Kurz", "Mittel", "Lang", "SEO", "SEO Plus"], key="length_option"
)
st.button(
"Artikel generieren",
key="article_btn",
on_click=on_click_handler_generate_generate_article_keywords,
kwargs={
"length_option": st.session_state["length_option"],
"artikel_input": st.session_state["keyword_article_input"],
"webpage_option": st.session_state["webpage_option"],
},
)
if st.session_state["generated_article"] and st.session_state["generated_headline"]:
st.write(f"**{st.session_state['generated_headline']}**")
st.write(st.session_state["generated_article"])
st.write("**Zusammenfassung:**")
st.write(st.session_state["article_summary"])
st.write("Kopieren Sie den Artikel: ")
st_copy_to_clipboard(
st.session_state["generated_headline"]
+ "\n"
+ st.session_state["generated_article"]
)
if st.session_state["studie_links"]:
st.write("Hier sind einige Studien, die relevant sein könnten:")
for result in st.session_state["studie_links"]:
st.write(f"- [{result['title']}]({result['link']})")
# else:
# st.write("Keine relevanten Studien gefunden.")
st.button(
"Relevante Studien finden",
on_click=get_related_studies,
args=(st.session_state["generated_article"],),
)
if "takeaways" in st.session_state:
st.write("Hier sind einige Takeaways die wichtig sein könnten:")
st.write(st.session_state["takeaways"])
if "faq" in st.session_state:
st.write("Hier sind FAQs zu dem Artikel:")
st.write(st.session_state["faq"])
st.button(
"Key Takeaways generieren",
on_click=lambda: get_takeaways(st.session_state["generated_article"]),
)
st.button(
"FAQ generieren",
on_click=lambda: get_faq(st.session_state["generated_article"]),
)
st.button(
"Neuen Artikel generieren", key="reset_btn", on_click=reset_session_state
)
if st.session_state["article_generation_mode"] == "trends":
trends_left, trends_right = st.columns([0.8, 0.2])
trends_right.radio(
label="Zeitraum auswählen",
options=[
"Echtzeit",
"Heute",
"Gestern"
],
key="selection_content_trends_timespan"
)
trends_right.button(
label="Suchen",
type="primary",
on_click=fetch_trends,
kwargs={
"timespan": st.session_state["selection_content_trends_timespan"]
},
use_container_width=True
)
trends_timespan = st.session_state["selection_content_trends_timespan"]
match trends_timespan:
case "Echtzeit":
render_trends_realtime(trends_left)
case "Heute":
render_trends_today(trends_left)
case "Gestern":
render_trends_yesterday(trends_left)
try:
st.button(
label="Informationen aus Links extrahieren",
on_click=extract_links,
use_container_width=True,
type="secondary",
key="btn_extract_trend_links",
kwargs={
"key": "content_trend_articles_extracted",
"links": st.session_state["content_trend_article_links"]
},
)
except Exception as e:
print(f"Fehler beim Extrahieren der Informationen: {str(e)}")
st.error(
body=f"Sie haben einen oder mehrere Links in einem inkorrekten Format angegeben. Bitte lade diese Seite neu und verwende valide URLs: {str(e)}",
icon="🚨",
)
st.write()
if st.session_state["content_trend_article_links"] != []:
st.write("Folgende Informationen konnten aus ihren Artikeln extrahiert werden:")
for i, link_content in enumerate(st.session_state["content_trend_articles_extracted"]):
with st.expander(f"Link {i+1}"):
if link_content:
st.text_area(
label="Bitte bearbeiten Sie die Informationen falls notwendig:",
value=link_content,
key="content_trend_article_final_" + str(i + 1)
)
else:
st.info(
body="Die Webseite Ihres Artikels blockiert das automatische Extrahieren des Artikels. Wenn Sie den Artikel dennoch verwenden möchten, dann können Sie diesen kopieren und in das untenstehende Textfeld einfügen.",
icon="ℹ️",
)
st.text_area(
"Bitte fügen Sie den Artikel ein:",
value=link_content,
key="content_trend_article_final_" + str(i + 1)
)
st.write("Artikellänge")
st.radio(
"Optionen",
["Kurz", "Mittel", "Lang", "SEO", "SEO Plus"],
key="length_option",
)
st.text_area(
"Füge weitere Informationen für den Prompt hinzu, falls nötig:",
key="add_info",
)
st.button(
"Artikel generieren",
key="article_btn",
on_click=on_click_handler_generate_article,
kwargs={
"length_option": st.session_state["length_option"],
"final_articles": get_final_articles(),
"add_info": st.session_state["add_info"],
"webpage_option": st.session_state["webpage_option"],
},
)
if st.session_state["generated_headline"] != "" and st.session_state["generated_article"] != "":
st.write(f"**{st.session_state['generated_headline']}**")
st.write(st.session_state["generated_article"])
st.write("**Zusammenfassung:**")
st.write(st.session_state["article_summary"])
st.write("Kopieren Sie den Artikel: ")
st_copy_to_clipboard(
st.session_state["generated_headline"]
+ "\n"
+ st.session_state["generated_article"]
)
if st.session_state["studie_links"]:
st.write("Hier sind einige Studien, die relevant sein könnten:")
for result in st.session_state["studie_links"]:
st.write(f"- [{result['title']}]({result['link']})")
else:
st.write("Keine relevanten Studien gefunden.")
if "takeaways" in st.session_state:
st.write("Hier sind einige Takeaways die wichtig sein könnten:")
st.write(st.session_state["takeaways"])
if "faq" in st.session_state:
st.write("Hier sind FAQs zu dem Artikel:")
st.write(st.session_state["faq"])
st.button(
"Relevante Studien finden",
on_click=get_related_studies,
args=(st.session_state["generated_article"],),
)
st.button(
"Key Takeaways generieren",
on_click=lambda: get_takeaways(st.session_state["generated_article"]),
)
st.button(
"FAQ generieren",
on_click=lambda: get_faq(st.session_state["generated_article"]),
)
st.button(
"Neuen Artikel generieren", key="reset_btn", on_click=reset_session_state
) |