Spaces:
Runtime error
Runtime error
import os | |
import time | |
from PIL import Image | |
import numpy as np | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" | |
os.system("wget https://user-images.githubusercontent.com/12981474/40157448-eff91f06-5953-11e8-9a37-f6b5693fa03f.png -O original.png") | |
# Declaring Constants | |
IMAGE_PATH = "original.png" | |
SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" | |
def preprocess_image(image_path): | |
""" Loads image from path and preprocesses to make it model ready | |
Args: | |
image_path: Path to the image file | |
""" | |
hr_image = tf.image.decode_image(tf.io.read_file(image_path)) | |
# If PNG, remove the alpha channel. The model only supports | |
# images with 3 color channels. | |
if hr_image.shape[-1] == 4: | |
hr_image = hr_image[...,:-1] | |
hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 | |
hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) | |
hr_image = tf.cast(hr_image, tf.float32) | |
return tf.expand_dims(hr_image, 0) | |
def plot_image(image): | |
""" | |
Plots images from image tensors. | |
Args: | |
image: 3D image tensor. [height, width, channels]. | |
title: Title to display in the plot. | |
""" | |
image = np.asarray(image) | |
image = tf.clip_by_value(image, 0, 255) | |
image = Image.fromarray(tf.cast(image, tf.uint8).numpy()) | |
return image | |
model = hub.load(SAVED_MODEL_PATH) | |
def inference(img): | |
hr_image = preprocess_image(img) | |
start = time.time() | |
fake_image = model(hr_image) | |
fake_image = tf.squeeze(fake_image) | |
print("Time Taken: %f" % (time.time() - start)) | |
pil_image = plot_image(tf.squeeze(fake_image)) | |
return pil_image | |
gr.Interface(inference,gr.inputs.Image(type="filepath"),"image").launch() | |