import os import time from PIL import Image import numpy as np import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt import gradio as gr os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True" os.system("wget https://user-images.githubusercontent.com/12981474/40157448-eff91f06-5953-11e8-9a37-f6b5693fa03f.png -O original.png") # Declaring Constants IMAGE_PATH = "original.png" SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1" def preprocess_image(image_path): """ Loads image from path and preprocesses to make it model ready Args: image_path: Path to the image file """ hr_image = tf.image.decode_image(tf.io.read_file(image_path)) # If PNG, remove the alpha channel. The model only supports # images with 3 color channels. if hr_image.shape[-1] == 4: hr_image = hr_image[...,:-1] hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4 hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1]) hr_image = tf.cast(hr_image, tf.float32) return tf.expand_dims(hr_image, 0) def plot_image(image): """ Plots images from image tensors. Args: image: 3D image tensor. [height, width, channels]. title: Title to display in the plot. """ image = np.asarray(image) image = tf.clip_by_value(image, 0, 255) image = Image.fromarray(tf.cast(image, tf.uint8).numpy()) return image model = hub.load(SAVED_MODEL_PATH) def inference(img): hr_image = preprocess_image(img) start = time.time() fake_image = model(hr_image) fake_image = tf.squeeze(fake_image) print("Time Taken: %f" % (time.time() - start)) pil_image = plot_image(tf.squeeze(fake_image)) return pil_image gr.Interface(inference,gr.inputs.Image(type="filepath"),"image").launch()