akhaliq HF staff commited on
Commit
7348f33
1 Parent(s): 1653019

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -57,7 +57,7 @@ def load_image(image_url, image_size=256, dynamic_size=False, max_dynamic_size=5
57
  image_size = 224
58
  dynamic_size = False
59
 
60
- model_name = "mobilenet_v3_large_075_224"
61
 
62
  model_handle_map = {
63
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
@@ -215,8 +215,8 @@ def inference(img):
215
  result[classes[class_index]] = probabilities[0][top_5][i].item()
216
  return result
217
 
218
- title="mobilenet_v3_large_075_224"
219
- description="Gradio Demo for mobilenet_v3_large_075_224: Imagenet (ILSVRC-2012-CLS) classification with MobileNet V3 large (depth multiplier 0.75). To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
220
  article = "<p style='text-align: center'><a href='https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5' target='_blank'>Tensorflow Hub</a></p>"
221
  examples=[['apple1.jpg']]
222
  gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)
 
57
  image_size = 224
58
  dynamic_size = False
59
 
60
+ model_name = "inception_v3"
61
 
62
  model_handle_map = {
63
  "efficientnetv2-s": "https://tfhub.dev/google/imagenet/efficientnet_v2_imagenet1k_s/classification/2",
 
215
  result[classes[class_index]] = probabilities[0][top_5][i].item()
216
  return result
217
 
218
+ title="inception_v3"
219
+ description="Gradio Demo for inception_v3: [TF2] Imagenet (ILSVRC-2012-CLS) classification with Inception V3. To use it, simply upload your image or click on one of the examples to load them. Read more at the links below"
220
  article = "<p style='text-align: center'><a href='https://tfhub.dev/google/imagenet/mobilenet_v3_large_075_224/classification/5' target='_blank'>Tensorflow Hub</a></p>"
221
  examples=[['apple1.jpg']]
222
  gr.Interface(inference,gr.inputs.Image(type="filepath"),"label",title=title,description=description,article=article,examples=examples).launch(enable_queue=True)