Spaces:
Sleeping
Sleeping
tensorgirl
commited on
Upload 2 files
Browse files- app.py +149 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import transformers
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
5 |
+
from transformers import AutoModelForSeq2SeqLM, pipeline
|
6 |
+
from huggingface_hub import login
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
new_model = "tensorgirl/finetuned-gemma"
|
11 |
+
model = AutoModelForCausalLM.from_pretrained(new_model, trust_remote_code=True)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(new_model, trust_remote_code=True)
|
13 |
+
tokenizer.pad_token = tokenizer.eos_token
|
14 |
+
|
15 |
+
generator = transformers.pipeline(
|
16 |
+
"text-generation",
|
17 |
+
model=model,
|
18 |
+
tokenizer=tokenizer,
|
19 |
+
torch_dtype=torch.bfloat16,
|
20 |
+
trust_remote_code=True,
|
21 |
+
device_map="auto",
|
22 |
+
)
|
23 |
+
|
24 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
26 |
+
device = 0 if torch.cuda.is_available() else -1
|
27 |
+
|
28 |
+
def translate(text, src_lang, tgt_lang):
|
29 |
+
|
30 |
+
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang, max_length=400, device=device)
|
31 |
+
result = translation_pipeline(text)
|
32 |
+
return result[0]['translation_text']
|
33 |
+
|
34 |
+
def English(audio):
|
35 |
+
|
36 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
|
37 |
+
sr, y = audio
|
38 |
+
y = y.astype(np.float32)
|
39 |
+
y = np.max(np.abs(y))
|
40 |
+
|
41 |
+
return transcriber({"sampling_rate": sr, "raw": y})["text"]
|
42 |
+
|
43 |
+
def Hindi(audio):
|
44 |
+
|
45 |
+
transcriber = pipeline("automatic-speech-recognition", model="theainerd/Wav2Vec2-large-xlsr-hindi")
|
46 |
+
sr, y = audio
|
47 |
+
y = y.astype(np.float32)
|
48 |
+
y = np.max(np.abs(y))
|
49 |
+
|
50 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
51 |
+
|
52 |
+
return translate(text, "hin_Deva", "eng_Latn")
|
53 |
+
|
54 |
+
|
55 |
+
def Telegu(audio):
|
56 |
+
|
57 |
+
transcriber = pipeline("automatic-speech-recognition", model="anuragshas/wav2vec2-large-xlsr-53-telugu")
|
58 |
+
sr, y = audio
|
59 |
+
y = y.astype(np.float32)
|
60 |
+
y = np.max(np.abs(y))
|
61 |
+
|
62 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
63 |
+
|
64 |
+
return translate(text, "tel_Telu", "eng_Latn")
|
65 |
+
|
66 |
+
def Tamil(audio):
|
67 |
+
|
68 |
+
transcriber = pipeline("automatic-speech-recognition", model="Harveenchadha/vakyansh-wav2vec2-tamil-tam-250")
|
69 |
+
sr, y = audio
|
70 |
+
y = y.astype(np.float32)
|
71 |
+
y = np.max(np.abs(y))
|
72 |
+
|
73 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
74 |
+
|
75 |
+
return translate(text, "tam_Taml", "eng_Latn")
|
76 |
+
|
77 |
+
def Kannada(audio):
|
78 |
+
|
79 |
+
transcriber = pipeline("automatic-speech-recognition", model="vasista22/whisper-kannada-medium")
|
80 |
+
sr, y = audio
|
81 |
+
y = y.astype(np.float32)
|
82 |
+
y = np.max(np.abs(y))
|
83 |
+
|
84 |
+
text = transcriber({"sampling_rate":sr, "raw":y})["text"]
|
85 |
+
|
86 |
+
return translate(text, "kan_Knda", "eng_Latn")
|
87 |
+
|
88 |
+
def predict(audio, language):
|
89 |
+
|
90 |
+
if language == English:
|
91 |
+
message = English(audio)
|
92 |
+
|
93 |
+
if language == Hindi:
|
94 |
+
message = Hindi(audio)
|
95 |
+
|
96 |
+
if language == Telegu:
|
97 |
+
message = Telegu(audio)
|
98 |
+
|
99 |
+
if language == Tamil:
|
100 |
+
message = Tamil(audio)
|
101 |
+
|
102 |
+
if language == Kannada:
|
103 |
+
message = Kannada(audio)
|
104 |
+
|
105 |
+
print(message)
|
106 |
+
|
107 |
+
sequences = generator(
|
108 |
+
message,
|
109 |
+
max_length=200,
|
110 |
+
do_sample=False,
|
111 |
+
top_k=10,
|
112 |
+
num_return_sequences=1,
|
113 |
+
eos_token_id=tokenizer.eos_token_id,)
|
114 |
+
|
115 |
+
answer = ""
|
116 |
+
for seq in sequences:
|
117 |
+
answer = answer + seq['generated_text'] + " "
|
118 |
+
|
119 |
+
print(answer)
|
120 |
+
if language == English:
|
121 |
+
return answer
|
122 |
+
|
123 |
+
if language == Hindi:
|
124 |
+
return translate(text,eng_Latn, hin_Deva)
|
125 |
+
|
126 |
+
if language == Telegu:
|
127 |
+
return translate(text,eng_Latn, tel_Telu)
|
128 |
+
|
129 |
+
if language == Tamil:
|
130 |
+
return translate(text, eng_Latn, tam_Taml)
|
131 |
+
|
132 |
+
if language == Kannada:
|
133 |
+
return translate(text, eng_Latn, kan_Knda)
|
134 |
+
|
135 |
+
return answer
|
136 |
+
|
137 |
+
demo = gr.Interface(
|
138 |
+
predict,
|
139 |
+
[gr.Audio(),
|
140 |
+
gr.Dropdown(
|
141 |
+
["Hindi", "Telegu", "Tamil", "Kannada", "English"], label="Language", info="Please select language of your choice"
|
142 |
+
)],
|
143 |
+
"text",
|
144 |
+
title = "Farmers-Helper-Bot",
|
145 |
+
description = "Ask your queries in your regional Language",
|
146 |
+
theme=gr.themes.Soft()
|
147 |
+
)
|
148 |
+
|
149 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
File without changes
|