ripple-search / app.py
tensorkelechi's picture
Update app.py
dc3bcae verified
raw
history blame
2.47 kB
import ripple
import streamlit as stl
from tqdm.auto import tqdm
# streamlit app
stl.set_page_config(
page_title="Ripple",
)
stl.title("ripple search")
stl.write(
"An app that uses text input to search for described images, using embeddings of selected image datasets. Uses contrastive learning models(CLIP) and the sentence-transformers"
)
stl.link_button(
label="Full library code",
url="https://github.com/kelechi-c/ripple_net",
)
dataset = stl.selectbox(
"choose huggingface dataset(bigger datasets take more time to embed..)",
options=[
"huggan/few-shot-art-painting",
"huggan/wikiart",
"zh-plus/tiny-imagenet",
"huggan/flowers-102-categories",
"lambdalabs/naruto-blip-captions",
"detection-datasets/fashionpedia",
"fantasyfish/laion-art",
"Chris1/cityscapes"
],
)
# initalized global variables
embedded_data = None
embedder = None
finder = None
search_term = None
ret_images = None
scores = None
#@stl.cache_data
def embed_data(dataset):
embedder = ripple.ImageEmbedder(
dataset, retrieval_type="text-image", dataset_type="huggingface"
)
embedded_data = embedder.create_embeddings(device="cpu")
return embedded_data, embedder
@stl.cache_resource
def init_search(_embedded_data, _embedder):
text_search = ripple.TextSearch(_embedded_data, _embedder.embed_model)
stl.success("Initialized text search class")
return text_search
def get_images_from_description(description):
scores, ret_images = finder.get_similar_images(description, k_images=4)
return scores, ret_images
if dataset and stl.button("embed image dataset"):
with stl.spinner("Initializing and creating image embeddings from dataset"):
embedded_data, embedder = embed_data(dataset)
stl.success("Successfully embedded and created image index")
if embedded_data and embedder:
finder = init_search(embedded_data, embedder)
search_term = stl.text_input("Text description/search for image")
if search_term is not None:
with stl.spinner("retrieving images with description.."):
scores, ret_images = get_images_from_description(search_term)
stl.success(f"sucessfully retrieved {len(ret_images)} images")
try:
for count, score, image in tqdm(zip(range(len(ret_images)), scores, ret_images)):
stl.image(image["image"][count])
stl.write(score)
except Exception as e:
stl.error(e)