File size: 3,678 Bytes
89b078e
9d2b048
89b078e
 
 
9d2b048
89b078e
9d2b048
89b078e
3f75f59
9d2b048
 
 
 
89b078e
 
 
 
 
 
 
 
 
 
 
 
 
 
ade57f6
89b078e
 
 
 
 
 
 
47cbb99
89b078e
 
 
 
 
 
 
 
 
 
 
 
ac669c3
89b078e
ac669c3
89b078e
 
9d2b048
 
 
 
89b078e
 
9d2b048
 
 
89b078e
9d2b048
 
dcad378
 
 
 
 
 
 
 
 
 
 
 
 
89b078e
 
ac669c3
89b078e
 
 
 
 
dcad378
89b078e
 
 
 
 
47cbb99
9d2b048
 
89b078e
 
 
 
 
 
 
dcad378
89b078e
 
 
 
 
9d2b048
 
47cbb99
9d2b048
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import streamlit as st
from transformers import pipeline
from pytube import YouTube
from pydub import AudioSegment
from audio_extract import extract_audio
import google.generativeai as google_genai
import os
from dotenv import load_dotenv


load_dotenv()

GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
google_genai.configure(api_key=GOOGLE_API_KEY)

st.set_page_config(
    page_title="VidText"
)

def youtube_video_downloader(url):
    yt_vid = YouTube(url)
    title = yt_vid.title
    vid_dld = (
        yt_vid.streams.filter(progressive=True, file_extension="mp4")
        .order_by("resolution")
        .desc()
        .first()    
    )
    vid_dld = vid_dld.download()
    return vid_dld, title


def audio_extraction(video_file, output_format):
    # temp_filename = video_file.name
    # video_path = f"{temp_filename}"
    audio = extract_audio(
        input_path=video_file, output_path=f"{str(video_file)[:-4]}.mp3", output_format=f"{output_format}"
    )
    return audio


def audio_processing(mp3_audio):
    audio = AudioSegment.from_file(mp3_audio, format="mp3")
    wav_file = "audio_file.wav"
    audio = audio.export(wav_file, format="wav")
    return wav_file


@st.cache_resource
def transcribe_video(_processed_audio):
    transcriber_model = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3")
    text_extract = transcriber_model(_processed_audio)
    return text_extract['text']

def generate_ai_summary(transcript):
    model = google_genai.GenerativeModel('gemini-pro')
    model_response = model.generate_content([f"Give a summary of the text {transcript}"], stream=True)
    return model_response.text
# Streamlit UI

youtube_url_tab, file_select_tab, audio_file_tab = st.tabs(
    ["Youtube url", "Video file", "Audio file"]
)

with youtube_url_tab:
    url = st.text_input("Enter the Youtube url")
    try:
        yt_video, title = youtube_video_downloader(url)
        if url:
           if st.button("Transcribe", key="yturl"):
               with st.spinner("Transcribing..."):
                   ytvideo_transcript = transcribe_video(yt_video)
               st.success(f"Transcription successful")
               st.write(ytvideo_transcript)
               if st.button("Generate Summary"):
                   summary = generate_ai_summary(ytvideo_transcript)
                   st.write(summary)
    except Exception as e:
        st.error(e)

# Video file transcription

with file_select_tab:
    video_file = st.file_uploader("Upload video file", type="mp4")
    
    
    if video_file:
        if st.button("Transcribe", key="vidfile"):
            with st.spinner("Transcribing..."):
                audio = audio_extraction(video_file, "mp3")
                video_transcript = transcribe_video(audio) 
                st.success(f"Transcription successful")
                st.write(video_transcript)
                if st.button("Generate Summary", key="ti2"):
                    summary = generate_ai_summary(video_transcript)
                    st.write(summary)


# Audio transcription
with audio_file_tab:
    audio_file = st.file_uploader("Upload audio file", type="mp3")  

    if audio_file:
        if st.button("Transcribe", key="audiofile"):
            with st.spinner("Transcribing..."):
                processed_audio = audio_processing(audio_file)
                audio_transcript = transcribe_video(processed_audio)
                st.success(f"Transcription successful")
                st.write(audio_transcript)


                if st.button("Generate Summary", key="ti1"):
                    summary = generate_ai_summary(audio_transcript)
                    st.write(summary)