Spaces:
Sleeping
Sleeping
from transformers import AutoModelForObjectDetection | |
import torch | |
from pdf2image import convert_from_bytes | |
from torchvision import transforms | |
from transformers import TableTransformerForObjectDetection | |
import numpy as np | |
import easyocr | |
from tqdm.auto import tqdm | |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") | |
model.config.id2label | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
structure_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all") | |
structure_model.to(device) | |
reader = easyocr.Reader(['en'], gpu=False) | |
def pdf_to_img(pdf_path): | |
image_list = [] | |
images = convert_from_bytes(pdf_path) | |
for i in range(len(images)): | |
image = images[i].convert("RGB") | |
image_list.append(image) | |
return image_list | |
class MaxResize(object): | |
def __init__(self, max_size=800): | |
self.max_size = max_size | |
def __call__(self, image): | |
width, height = image.size | |
current_max_size = max(width, height) | |
scale = self.max_size / current_max_size | |
resized_image = image.resize((int(round(scale*width)), int(round(scale*height)))) | |
return resized_image | |
def box_cxcywh_to_xyxy(x): | |
x_c, y_c, w, h = x.unbind(-1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=1) | |
def rescale_bboxes(out_bbox, size): | |
img_w, img_h = size | |
b = box_cxcywh_to_xyxy(out_bbox) | |
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) | |
return b | |
def outputs_to_objects(outputs, img_size, id2label): | |
m = outputs.logits.softmax(-1).max(-1) | |
pred_labels = list(m.indices.detach().cpu().numpy())[0] | |
pred_scores = list(m.values.detach().cpu().numpy())[0] | |
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] | |
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] | |
objects = [] | |
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): | |
class_label = id2label[int(label)] | |
if not class_label == 'no object': | |
objects.append({'label': class_label, 'score': float(score), | |
'bbox': [float(elem) for elem in bbox]}) | |
return objects | |
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10): | |
""" | |
Process the bounding boxes produced by the table detection model into | |
cropped table images and cropped tokens. | |
""" | |
table_crops = [] | |
for obj in objects: | |
if obj['score'] < class_thresholds[obj['label']]: | |
continue | |
cropped_table = {} | |
bbox = obj['bbox'] | |
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding] | |
cropped_img = img.crop(bbox) | |
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5] | |
for token in table_tokens: | |
token['bbox'] = [token['bbox'][0]-bbox[0], | |
token['bbox'][1]-bbox[1], | |
token['bbox'][2]-bbox[0], | |
token['bbox'][3]-bbox[1]] | |
# If table is predicted to be rotated, rotate cropped image and tokens/words: | |
if obj['label'] == 'table rotated': | |
cropped_img = cropped_img.rotate(270, expand=True) | |
for token in table_tokens: | |
bbox = token['bbox'] | |
bbox = [cropped_img.size[0]-bbox[3]-1, | |
bbox[0], | |
cropped_img.size[0]-bbox[1]-1, | |
bbox[2]] | |
token['bbox'] = bbox | |
cropped_table['image'] = cropped_img | |
cropped_table['tokens'] = table_tokens | |
table_crops.append(cropped_table) | |
return table_crops | |
def get_cell_coordinates_by_row(table_data): | |
# Extract rows and columns | |
rows = [entry for entry in table_data if entry['label'] == 'table row'] | |
columns = [entry for entry in table_data if entry['label'] == 'table column'] | |
# Sort rows and columns by their Y and X coordinates, respectively | |
rows.sort(key=lambda x: x['bbox'][1]) | |
columns.sort(key=lambda x: x['bbox'][0]) | |
# Function to find cell coordinates | |
def find_cell_coordinates(row, column): | |
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]] | |
return cell_bbox | |
# Generate cell coordinates and count cells in each row | |
cell_coordinates = [] | |
for row in rows: | |
row_cells = [] | |
for column in columns: | |
cell_bbox = find_cell_coordinates(row, column) | |
row_cells.append({'column': column['bbox'], 'cell': cell_bbox}) | |
# Sort cells in the row by X coordinate | |
row_cells.sort(key=lambda x: x['column'][0]) | |
# Append row information to cell_coordinates | |
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)}) | |
# Sort rows from top to bottom | |
cell_coordinates.sort(key=lambda x: x['row'][1]) | |
return cell_coordinates | |
def apply_ocr(cell_coordinates, cropped_table): | |
# let's OCR row by row | |
data = dict() | |
max_num_columns = 0 | |
for idx, row in enumerate(tqdm(cell_coordinates)): | |
row_text = [] | |
for cell in row["cells"]: | |
# crop cell out of image | |
cell_image = np.array(cropped_table.crop(cell["cell"])) | |
# apply OCR | |
result = reader.readtext(np.array(cell_image)) | |
if len(result) > 0: | |
# print([x[1] for x in list(result)]) | |
text = " ".join([x[1] for x in result]) | |
row_text.append(text) | |
if len(row_text) > max_num_columns: | |
max_num_columns = len(row_text) | |
data[idx] = row_text | |
print("Max number of columns:", max_num_columns) | |
# pad rows which don't have max_num_columns elements | |
# to make sure all rows have the same number of columns | |
for row, row_data in data.copy().items(): | |
if len(row_data) != max_num_columns: | |
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))] | |
data[row] = row_data | |
return data | |
def get_tables(pdf_path): | |
image_list = pdf_to_img(pdf_path) | |
data_dict = {} | |
for index, image in enumerate(image_list): | |
detection_transform = transforms.Compose([ | |
MaxResize(800), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
pixel_values = detection_transform(image).unsqueeze(0) | |
pixel_values = pixel_values.to(device) | |
with torch.no_grad(): | |
outputs = model(pixel_values) | |
id2label = model.config.id2label | |
id2label[len(model.config.id2label)] = "no object" | |
objects = outputs_to_objects(outputs, image.size, id2label) | |
tokens = [] | |
detection_class_thresholds = { | |
"table": 0.5, | |
"table rotated": 0.5, | |
"no object": 10 | |
} | |
crop_padding = 10 | |
tables_crops = objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=0) | |
for table_index, table_crop in enumerate(tables_crops): | |
cropped_table = table_crop['image'].convert("RGB") | |
structure_transform = transforms.Compose([ | |
MaxResize(1000), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
pixel_values = structure_transform(cropped_table).unsqueeze(0) | |
pixel_values = pixel_values.to(device) | |
with torch.no_grad(): | |
outputs = structure_model(pixel_values) | |
structure_id2label = structure_model.config.id2label | |
structure_id2label[len(structure_id2label)] = "no object" | |
cells = outputs_to_objects(outputs, cropped_table.size, structure_id2label) | |
if cells[0]['score'] > 0.95: | |
cell_coordinates = get_cell_coordinates_by_row(cells) | |
data = apply_ocr(cell_coordinates, cropped_table) | |
data_dict[f"{index+1}_{table_index+1}"] = data | |
return data_dict |