rishiraj's picture
Update pdf/utils/tt_module.py
020474e verified
raw
history blame
8.19 kB
from transformers import AutoModelForObjectDetection
import torch
from pdf2image import convert_from_bytes
from torchvision import transforms
from transformers import TableTransformerForObjectDetection
import numpy as np
import easyocr
from tqdm.auto import tqdm
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm")
model.config.id2label
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
structure_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all")
structure_model.to(device)
reader = easyocr.Reader(['en'], gpu=False)
def pdf_to_img(pdf_path):
image_list = []
images = convert_from_bytes(pdf_path)
for i in range(len(images)):
image = images[i].convert("RGB")
image_list.append(image)
return image_list
class MaxResize(object):
def __init__(self, max_size=800):
self.max_size = max_size
def __call__(self, image):
width, height = image.size
current_max_size = max(width, height)
scale = self.max_size / current_max_size
resized_image = image.resize((int(round(scale*width)), int(round(scale*height))))
return resized_image
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def outputs_to_objects(outputs, img_size, id2label):
m = outputs.logits.softmax(-1).max(-1)
pred_labels = list(m.indices.detach().cpu().numpy())[0]
pred_scores = list(m.values.detach().cpu().numpy())[0]
pred_bboxes = outputs['pred_boxes'].detach().cpu()[0]
pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)]
objects = []
for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes):
class_label = id2label[int(label)]
if not class_label == 'no object':
objects.append({'label': class_label, 'score': float(score),
'bbox': [float(elem) for elem in bbox]})
return objects
def objects_to_crops(img, tokens, objects, class_thresholds, padding=10):
"""
Process the bounding boxes produced by the table detection model into
cropped table images and cropped tokens.
"""
table_crops = []
for obj in objects:
if obj['score'] < class_thresholds[obj['label']]:
continue
cropped_table = {}
bbox = obj['bbox']
bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding]
cropped_img = img.crop(bbox)
table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5]
for token in table_tokens:
token['bbox'] = [token['bbox'][0]-bbox[0],
token['bbox'][1]-bbox[1],
token['bbox'][2]-bbox[0],
token['bbox'][3]-bbox[1]]
# If table is predicted to be rotated, rotate cropped image and tokens/words:
if obj['label'] == 'table rotated':
cropped_img = cropped_img.rotate(270, expand=True)
for token in table_tokens:
bbox = token['bbox']
bbox = [cropped_img.size[0]-bbox[3]-1,
bbox[0],
cropped_img.size[0]-bbox[1]-1,
bbox[2]]
token['bbox'] = bbox
cropped_table['image'] = cropped_img
cropped_table['tokens'] = table_tokens
table_crops.append(cropped_table)
return table_crops
def get_cell_coordinates_by_row(table_data):
# Extract rows and columns
rows = [entry for entry in table_data if entry['label'] == 'table row']
columns = [entry for entry in table_data if entry['label'] == 'table column']
# Sort rows and columns by their Y and X coordinates, respectively
rows.sort(key=lambda x: x['bbox'][1])
columns.sort(key=lambda x: x['bbox'][0])
# Function to find cell coordinates
def find_cell_coordinates(row, column):
cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]]
return cell_bbox
# Generate cell coordinates and count cells in each row
cell_coordinates = []
for row in rows:
row_cells = []
for column in columns:
cell_bbox = find_cell_coordinates(row, column)
row_cells.append({'column': column['bbox'], 'cell': cell_bbox})
# Sort cells in the row by X coordinate
row_cells.sort(key=lambda x: x['column'][0])
# Append row information to cell_coordinates
cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)})
# Sort rows from top to bottom
cell_coordinates.sort(key=lambda x: x['row'][1])
return cell_coordinates
def apply_ocr(cell_coordinates, cropped_table):
# let's OCR row by row
data = dict()
max_num_columns = 0
for idx, row in enumerate(tqdm(cell_coordinates)):
row_text = []
for cell in row["cells"]:
# crop cell out of image
cell_image = np.array(cropped_table.crop(cell["cell"]))
# apply OCR
result = reader.readtext(np.array(cell_image))
if len(result) > 0:
# print([x[1] for x in list(result)])
text = " ".join([x[1] for x in result])
row_text.append(text)
if len(row_text) > max_num_columns:
max_num_columns = len(row_text)
data[idx] = row_text
print("Max number of columns:", max_num_columns)
# pad rows which don't have max_num_columns elements
# to make sure all rows have the same number of columns
for row, row_data in data.copy().items():
if len(row_data) != max_num_columns:
row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))]
data[row] = row_data
return data
def get_tables(pdf_path):
image_list = pdf_to_img(pdf_path)
data_dict = {}
for index, image in enumerate(image_list):
detection_transform = transforms.Compose([
MaxResize(800),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pixel_values = detection_transform(image).unsqueeze(0)
pixel_values = pixel_values.to(device)
with torch.no_grad():
outputs = model(pixel_values)
id2label = model.config.id2label
id2label[len(model.config.id2label)] = "no object"
objects = outputs_to_objects(outputs, image.size, id2label)
tokens = []
detection_class_thresholds = {
"table": 0.5,
"table rotated": 0.5,
"no object": 10
}
crop_padding = 10
tables_crops = objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=0)
for table_index, table_crop in enumerate(tables_crops):
cropped_table = table_crop['image'].convert("RGB")
structure_transform = transforms.Compose([
MaxResize(1000),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
pixel_values = structure_transform(cropped_table).unsqueeze(0)
pixel_values = pixel_values.to(device)
with torch.no_grad():
outputs = structure_model(pixel_values)
structure_id2label = structure_model.config.id2label
structure_id2label[len(structure_id2label)] = "no object"
cells = outputs_to_objects(outputs, cropped_table.size, structure_id2label)
if cells[0]['score'] > 0.95:
cell_coordinates = get_cell_coordinates_by_row(cells)
data = apply_ocr(cell_coordinates, cropped_table)
data_dict[f"{index+1}_{table_index+1}"] = data
return data_dict