from transformers import AutoModelForObjectDetection import torch from pdf2image import convert_from_bytes from torchvision import transforms from transformers import TableTransformerForObjectDetection import numpy as np import easyocr from tqdm.auto import tqdm model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-detection", revision="no_timm") model.config.id2label device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) structure_model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-structure-recognition-v1.1-all") structure_model.to(device) reader = easyocr.Reader(['en'], gpu=False) def pdf_to_img(pdf_path): image_list = [] images = convert_from_bytes(pdf_path) for i in range(len(images)): image = images[i].convert("RGB") image_list.append(image) return image_list class MaxResize(object): def __init__(self, max_size=800): self.max_size = max_size def __call__(self, image): width, height = image.size current_max_size = max(width, height) scale = self.max_size / current_max_size resized_image = image.resize((int(round(scale*width)), int(round(scale*height)))) return resized_image def box_cxcywh_to_xyxy(x): x_c, y_c, w, h = x.unbind(-1) b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)] return torch.stack(b, dim=1) def rescale_bboxes(out_bbox, size): img_w, img_h = size b = box_cxcywh_to_xyxy(out_bbox) b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32) return b def outputs_to_objects(outputs, img_size, id2label): m = outputs.logits.softmax(-1).max(-1) pred_labels = list(m.indices.detach().cpu().numpy())[0] pred_scores = list(m.values.detach().cpu().numpy())[0] pred_bboxes = outputs['pred_boxes'].detach().cpu()[0] pred_bboxes = [elem.tolist() for elem in rescale_bboxes(pred_bboxes, img_size)] objects = [] for label, score, bbox in zip(pred_labels, pred_scores, pred_bboxes): class_label = id2label[int(label)] if not class_label == 'no object': objects.append({'label': class_label, 'score': float(score), 'bbox': [float(elem) for elem in bbox]}) return objects def objects_to_crops(img, tokens, objects, class_thresholds, padding=10): """ Process the bounding boxes produced by the table detection model into cropped table images and cropped tokens. """ table_crops = [] for obj in objects: if obj['score'] < class_thresholds[obj['label']]: continue cropped_table = {} bbox = obj['bbox'] bbox = [bbox[0]-padding, bbox[1]-padding, bbox[2]+padding, bbox[3]+padding] cropped_img = img.crop(bbox) table_tokens = [token for token in tokens if iob(token['bbox'], bbox) >= 0.5] for token in table_tokens: token['bbox'] = [token['bbox'][0]-bbox[0], token['bbox'][1]-bbox[1], token['bbox'][2]-bbox[0], token['bbox'][3]-bbox[1]] # If table is predicted to be rotated, rotate cropped image and tokens/words: if obj['label'] == 'table rotated': cropped_img = cropped_img.rotate(270, expand=True) for token in table_tokens: bbox = token['bbox'] bbox = [cropped_img.size[0]-bbox[3]-1, bbox[0], cropped_img.size[0]-bbox[1]-1, bbox[2]] token['bbox'] = bbox cropped_table['image'] = cropped_img cropped_table['tokens'] = table_tokens table_crops.append(cropped_table) return table_crops def get_cell_coordinates_by_row(table_data): # Extract rows and columns rows = [entry for entry in table_data if entry['label'] == 'table row'] columns = [entry for entry in table_data if entry['label'] == 'table column'] # Sort rows and columns by their Y and X coordinates, respectively rows.sort(key=lambda x: x['bbox'][1]) columns.sort(key=lambda x: x['bbox'][0]) # Function to find cell coordinates def find_cell_coordinates(row, column): cell_bbox = [column['bbox'][0], row['bbox'][1], column['bbox'][2], row['bbox'][3]] return cell_bbox # Generate cell coordinates and count cells in each row cell_coordinates = [] for row in rows: row_cells = [] for column in columns: cell_bbox = find_cell_coordinates(row, column) row_cells.append({'column': column['bbox'], 'cell': cell_bbox}) # Sort cells in the row by X coordinate row_cells.sort(key=lambda x: x['column'][0]) # Append row information to cell_coordinates cell_coordinates.append({'row': row['bbox'], 'cells': row_cells, 'cell_count': len(row_cells)}) # Sort rows from top to bottom cell_coordinates.sort(key=lambda x: x['row'][1]) return cell_coordinates def apply_ocr(cell_coordinates, cropped_table): # let's OCR row by row data = dict() max_num_columns = 0 for idx, row in enumerate(tqdm(cell_coordinates)): row_text = [] for cell in row["cells"]: # crop cell out of image cell_image = np.array(cropped_table.crop(cell["cell"])) # apply OCR result = reader.readtext(np.array(cell_image)) if len(result) > 0: # print([x[1] for x in list(result)]) text = " ".join([x[1] for x in result]) row_text.append(text) if len(row_text) > max_num_columns: max_num_columns = len(row_text) data[idx] = row_text print("Max number of columns:", max_num_columns) # pad rows which don't have max_num_columns elements # to make sure all rows have the same number of columns for row, row_data in data.copy().items(): if len(row_data) != max_num_columns: row_data = row_data + ["" for _ in range(max_num_columns - len(row_data))] data[row] = row_data return data def get_tables(pdf_path): image_list = pdf_to_img(pdf_path) data_dict = {} for index, image in enumerate(image_list): detection_transform = transforms.Compose([ MaxResize(800), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) pixel_values = detection_transform(image).unsqueeze(0) pixel_values = pixel_values.to(device) with torch.no_grad(): outputs = model(pixel_values) id2label = model.config.id2label id2label[len(model.config.id2label)] = "no object" objects = outputs_to_objects(outputs, image.size, id2label) tokens = [] detection_class_thresholds = { "table": 0.5, "table rotated": 0.5, "no object": 10 } crop_padding = 10 tables_crops = objects_to_crops(image, tokens, objects, detection_class_thresholds, padding=0) for table_index, table_crop in enumerate(tables_crops): cropped_table = table_crop['image'].convert("RGB") structure_transform = transforms.Compose([ MaxResize(1000), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) pixel_values = structure_transform(cropped_table).unsqueeze(0) pixel_values = pixel_values.to(device) with torch.no_grad(): outputs = structure_model(pixel_values) structure_id2label = structure_model.config.id2label structure_id2label[len(structure_id2label)] = "no object" cells = outputs_to_objects(outputs, cropped_table.size, structure_id2label) if cells[0]['score'] > 0.95: cell_coordinates = get_cell_coordinates_by_row(cells) data = apply_ocr(cell_coordinates, cropped_table) data_dict[f"{index+1}_{table_index+1}"] = data return data_dict