base add
Browse files- app.py +179 -63
- requirements.txt +10 -1
app.py
CHANGED
@@ -1,64 +1,180 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
3 |
+
from threading import Thread
|
4 |
+
import re
|
5 |
+
import time
|
6 |
+
from PIL import Image
|
7 |
+
import torch
|
8 |
+
import spaces
|
9 |
+
import subprocess
|
10 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
11 |
+
|
12 |
+
import requests
|
13 |
+
import torch
|
14 |
+
from PIL import Image
|
15 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
16 |
+
|
17 |
+
from decord import VideoReader
|
18 |
+
from decord import cpu
|
19 |
+
from PIL import Image
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
def load_video(video_path, frames=32):
|
23 |
+
"""
|
24 |
+
Load a video and extract a specified number of frames as PIL.Image objects.
|
25 |
+
|
26 |
+
Parameters:
|
27 |
+
- video_path (str): Path to the video file.
|
28 |
+
- frames (int): Number of frames to extract.
|
29 |
+
|
30 |
+
Returns:
|
31 |
+
- List[PIL.Image]: A list of PIL.Image objects for the extracted frames.
|
32 |
+
"""
|
33 |
+
# Initialize VideoReader
|
34 |
+
vr = VideoReader(video_path, ctx=cpu())
|
35 |
+
total_frames = len(vr)
|
36 |
+
|
37 |
+
# Select frame indices evenly spaced throughout the video
|
38 |
+
frame_indices = np.linspace(0, total_frames - 1, frames, dtype=int)
|
39 |
+
|
40 |
+
# Extract frames and convert to PIL.Images
|
41 |
+
images = []
|
42 |
+
for idx in frame_indices:
|
43 |
+
frame = vr[idx] # Get the frame as a NumPy array
|
44 |
+
image = Image.fromarray(frame.asnumpy()) # Convert to PIL.Image
|
45 |
+
images.append(image)
|
46 |
+
|
47 |
+
return images
|
48 |
+
|
49 |
+
model_id_or_path = "teowu/Aria-Chat-Preview"
|
50 |
+
|
51 |
+
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16,
|
52 |
+
trust_remote_code=True)
|
53 |
+
|
54 |
+
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
55 |
+
|
56 |
+
@spaces.GPU
|
57 |
+
def model_inference(
|
58 |
+
input_dict, history, decoding_strategy, temperature, max_new_tokens, top_p
|
59 |
+
):
|
60 |
+
text = input_dict["text"]
|
61 |
+
print(input_dict["files"])
|
62 |
+
if len(input_dict["files"]) > 1:
|
63 |
+
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
|
64 |
+
elif len(input_dict["files"]) == 1:
|
65 |
+
if input_dict["files"][0].endswith(".mp4") or input_dict["files"][0].endswith(".avi"):
|
66 |
+
images = load_video(input_dict["files"][0])
|
67 |
+
else:
|
68 |
+
images = [Image.open(input_dict["files"][0]).convert("RGB")]
|
69 |
+
else:
|
70 |
+
images = []
|
71 |
+
|
72 |
+
|
73 |
+
if text == "" and not images:
|
74 |
+
gr.Error("Please input a query and optionally image(s).")
|
75 |
+
|
76 |
+
if text == "" and images:
|
77 |
+
text = "Please provide a detailed description."
|
78 |
+
#gr.Error("Please input a text query along the image(s).")
|
79 |
+
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
resulting_messages = [
|
84 |
+
{
|
85 |
+
"role": "user",
|
86 |
+
"content": [{"type": "image", "text": None} for _ in range(len(images))] + [
|
87 |
+
{"type": "text", "text": "\n" + text}
|
88 |
+
]
|
89 |
+
}
|
90 |
+
]
|
91 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
92 |
+
inputs = processor(text=prompt, images=images, return_tensors="pt")
|
93 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
94 |
+
generation_args = {
|
95 |
+
"max_new_tokens": max_new_tokens,
|
96 |
+
"repetition_penalty": repetition_penalty,
|
97 |
+
}
|
98 |
+
|
99 |
+
assert decoding_strategy in [
|
100 |
+
"Greedy",
|
101 |
+
"Top P Sampling",
|
102 |
+
]
|
103 |
+
if decoding_strategy == "Greedy":
|
104 |
+
generation_args["do_sample"] = False
|
105 |
+
elif decoding_strategy == "Top P Sampling":
|
106 |
+
generation_args["temperature"] = temperature
|
107 |
+
generation_args["do_sample"] = True
|
108 |
+
generation_args["top_p"] = top_p
|
109 |
+
|
110 |
+
generation_args.update(inputs)
|
111 |
+
# Generate
|
112 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens= True)
|
113 |
+
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
114 |
+
generated_text = ""
|
115 |
+
|
116 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
117 |
+
thread.start()
|
118 |
+
|
119 |
+
yield "..."
|
120 |
+
buffer = ""
|
121 |
+
|
122 |
+
|
123 |
+
for new_text in streamer:
|
124 |
+
|
125 |
+
buffer += new_text
|
126 |
+
generated_text_without_prompt = buffer#[len(ext_buffer):]
|
127 |
+
time.sleep(0.01)
|
128 |
+
yield buffer
|
129 |
+
|
130 |
+
|
131 |
+
examples=[
|
132 |
+
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
133 |
+
[{"text": "I'm planning a visit to this temple, give me travel tips.", "files": ["example_images/examples_wat_arun.jpg"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
134 |
+
[{"text": "What is the due date and the invoice date?", "files": ["example_images/examples_invoice.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
135 |
+
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
136 |
+
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}, "Greedy", 0.4, 512, 1.2, 0.8],
|
137 |
+
]
|
138 |
+
demo = gr.ChatInterface(fn=model_inference, title="Aria-Chat: Improved Real-world Abilties for Open-source LMMs on Images and Videos",
|
139 |
+
description="Play with [rhymes-ai/Aria-Chat-Preview](https://huggingface.co/rhymes-ai/Aria-Chat-Preview) in this demo. To get started, upload an image (or a video) and text or try one of the examples. This checkpoint works best with single turn conversations, so clear the conversation after a single turn.",
|
140 |
+
examples=examples,
|
141 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
142 |
+
additional_inputs=[gr.Radio(["Top P Sampling",
|
143 |
+
"Greedy"],
|
144 |
+
value="Greedy",
|
145 |
+
label="Decoding strategy",
|
146 |
+
#interactive=True,
|
147 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
148 |
+
|
149 |
+
), gr.Slider(
|
150 |
+
minimum=0.0,
|
151 |
+
maximum=5.0,
|
152 |
+
value=0.4,
|
153 |
+
step=0.1,
|
154 |
+
interactive=True,
|
155 |
+
label="Sampling temperature",
|
156 |
+
info="Higher values will produce more diverse outputs.",
|
157 |
+
),
|
158 |
+
gr.Slider(
|
159 |
+
minimum=8,
|
160 |
+
maximum=1024,
|
161 |
+
value=512,
|
162 |
+
step=1,
|
163 |
+
interactive=True,
|
164 |
+
label="Maximum number of new tokens to generate",
|
165 |
+
),
|
166 |
+
gr.Slider(
|
167 |
+
minimum=0.01,
|
168 |
+
maximum=0.99,
|
169 |
+
value=0.8,
|
170 |
+
step=0.01,
|
171 |
+
interactive=True,
|
172 |
+
label="Top P",
|
173 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
174 |
+
)],cache_examples=False
|
175 |
+
)
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1 +1,10 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
accelerate
|
3 |
+
huggingface_hub
|
4 |
+
gradio
|
5 |
+
transformers
|
6 |
+
spaces
|
7 |
+
decord
|
8 |
+
torchvision
|
9 |
+
sentencepiece
|
10 |
+
grouped_gemm
|