File size: 2,866 Bytes
233119d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# Taken from llama code and lightly modified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.

import os
import struct
import argparse
from typing import List

from sentencepiece import SentencePieceProcessor

TOKENIZER_MODEL = "tokenizer.model" # the llama sentencepiece tokenizer model

class Tokenizer:
    def __init__(self, tokenizer_model=None):
        model_path = tokenizer_model if tokenizer_model else TOKENIZER_MODEL
        assert os.path.isfile(model_path), model_path
        self.sp_model = SentencePieceProcessor(model_file=model_path)
        self.model_path = model_path

        # BOS / EOS token IDs
        self.n_words: int = self.sp_model.vocab_size()
        self.bos_id: int = self.sp_model.bos_id()
        self.eos_id: int = self.sp_model.eos_id()
        self.pad_id: int = self.sp_model.pad_id()
        #print(f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}")
        assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()

    def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
        assert type(s) is str
        t = self.sp_model.encode(s)
        if bos:
            t = [self.bos_id] + t
        if eos:
            t = t + [self.eos_id]
        return t

    def decode(self, t: List[int]) -> str:
        return self.sp_model.decode(t)

    def export(self):

        # get all the tokens (postprocessed) and their scores as floats
        tokens, scores = [], []
        for i in range(self.n_words):

            # decode the token and light postprocessing
            t = self.sp_model.id_to_piece(i)
            s = self.sp_model.get_score(i)
            if i == self.bos_id:
                t = '\n<s>\n'
            elif i == self.eos_id:
                t = '\n</s>\n'
            t = t.replace('▁', ' ') # sentencepiece uses this character as whitespace
            b = t.encode('utf-8') # bytes of this token, utf-8 encoded

            tokens.append(b)
            scores.append(s)

        # record the max token length
        max_token_length = max(len(t) for t in tokens)

        # write to a binary file
        # the tokenizer.bin file is the same as .model file, but .bin
        tokenizer_bin = self.model_path.replace('.model', '.bin')
        with open(tokenizer_bin, 'wb') as f:
            f.write(struct.pack("I", max_token_length))
            for bytes, score in zip(tokens, scores):
                f.write(struct.pack("fI", score, len(bytes)))
                f.write(bytes)

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-t", "--tokenizer-model", type=str, help="optional path to custom tokenizer ")
    args = parser.parse_args()

    t = Tokenizer(args.tokenizer_model)
    t.export()