File size: 5,216 Bytes
2c70642
6ab28e5
 
 
2c70642
 
 
 
 
 
 
9022e07
6ab28e5
 
 
2c70642
6ab28e5
 
2c70642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ab28e5
 
2c70642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9022e07
2c70642
 
 
9022e07
 
 
 
 
2c70642
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99d3f35
 
 
 
 
 
 
 
2c70642
 
 
 
 
 
 
9022e07
 
 
2c70642
6ab28e5
2c70642
6ab28e5
 
 
9bc4a6c
6ab28e5
9bc4a6c
 
 
6ab28e5
9bc4a6c
 
 
 
6ab28e5
 
2c70642
 
 
 
6ab28e5
 
 
 
 
 
 
 
 
 
 
 
 
99d3f35
 
2c70642
 
 
 
 
 
 
 
99d3f35
6ab28e5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# from time import time
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from langchain.llms import HuggingFacePipeline

# from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.vectorstores import Qdrant
from openai.error import InvalidRequestError
from qdrant_client import QdrantClient
from config import DB_CONFIG, DB_E5_CONFIG


def _get_config_and_embeddings(collection_name: str | None) -> tuple:
    if collection_name is None or collection_name == "E5":
        db_config = DB_E5_CONFIG
        model_name = "intfloat/multilingual-e5-large"
        model_kwargs = {"device": "cpu"}
        encode_kwargs = {"normalize_embeddings": False}
        embeddings = HuggingFaceEmbeddings(
            model_name=model_name,
            model_kwargs=model_kwargs,
            encode_kwargs=encode_kwargs,
        )
    elif collection_name == "OpenAI":
        db_config = DB_CONFIG
        embeddings = OpenAIEmbeddings()
    else:
        raise ValueError("Unknow collection name")
    return db_config, embeddings


def _get_rinna_llm(temperature: float):
    model = "rinna/bilingual-gpt-neox-4b-instruction-ppo"
    tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False)
    model = AutoModelForCausalLM.from_pretrained(
        model,
        load_in_8bit=True,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        max_new_tokens=1024,
        temperature=temperature,
    )
    llm = HuggingFacePipeline(pipeline=pipe)
    return llm


def _get_llm_model(
    model_name: str | None,
    temperature: float,
):
    if model_name is None:
        model = "rinna"
    elif model_name == "rinna":
        model = "rinna"
    elif model_name == "GPT-3.5":
        model = "gpt-3.5-turbo"
    elif model_name == "GPT-4":
        model = "gpt-4"
    else:
        raise ValueError("Unknow model name")
    if model.startswith("gpt"):
        llm = ChatOpenAI(model=model, temperature=temperature)
    elif model == "rinna":
        llm = _get_rinna_llm(temperature)
    return llm


# prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

# {context}

# Question: {question}
# Answer in Japanese:"""
# PROMPT = PromptTemplate(
#     template=prompt_template, input_variables=["context", "question"]
# )


def get_retrieval_qa(
    collection_name: str | None,
    model_name: str | None,
    temperature: float,
    option: str | None,
) -> RetrievalQA:
    db_config, embeddings = _get_config_and_embeddings(collection_name)
    db_url, db_api_key, db_collection_name = db_config
    client = QdrantClient(url=db_url, api_key=db_api_key)
    db = Qdrant(
        client=client, collection_name=db_collection_name, embeddings=embeddings
    )

    if option is None or option == "All":
        retriever = db.as_retriever()
    else:
        retriever = db.as_retriever(
            search_kwargs={
                "filter": {"category": option},
            }
        )

    llm = _get_llm_model(model_name, temperature)

    # chain_type_kwargs = {"prompt": PROMPT}

    result = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
        # chain_type_kwargs=chain_type_kwargs,
    )
    return result


def get_related_url(metadata):
    urls = set()
    for m in metadata:
        # p = m['source']
        url = m["url"]
        if url in urls:
            continue
        urls.add(url)
        category = m["category"]
        # print(m)
        yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'


def main(
    query: str, collection_name: str, model_name: str, option: str, temperature: float
):
    qa = get_retrieval_qa(collection_name, model_name, temperature, option)
    try:
        result = qa(query)
    except InvalidRequestError as e:
        return "回答が見つかりませんでした。別な質問をしてみてください", str(e)
    else:
        metadata = [s.metadata for s in result["source_documents"]]
        html = "<div>" + "\n".join(get_related_url(metadata)) + "</div>"

    return result["result"], html


nvdajp_book_qa = gr.Interface(
    fn=main,
    inputs=[
        gr.Textbox(label="query"),
        gr.Radio(["E5", "OpenAI"], label="Embedding", info="選択なしで「E5」を使用"),
        gr.Radio(["rinna", "GPT-3.5", "GPT-4"], label="Model", info="選択なしで「rinna」を使用"),
        gr.Radio(
            ["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"],
            label="絞り込み",
            info="ドキュメント制限する?",
        ),
        gr.Slider(0, 2),
    ],
    outputs=[gr.Textbox(label="answer"), gr.outputs.HTML()],
)


nvdajp_book_qa.launch()