nvdajp-book-qa / app.py
terapyon's picture
added NVDA User guide content and added filter QA
227586c
raw
history blame
2.18 kB
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.vectorstores import Qdrant
from openai.error import InvalidRequestError
from qdrant_client import QdrantClient
from config import DB_CONFIG
PERSIST_DIR_NAME = "nvdajp-book"
def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA:
embeddings = OpenAIEmbeddings()
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
if option is None or option == "All":
retriever = db.as_retriever()
else:
retriever = db.as_retriever(
search_kwargs={
"filter": {"category": option},
}
)
return RetrievalQA.from_chain_type(
llm=OpenAI(temperature=temperature), chain_type="stuff", retriever=retriever, return_source_documents=True,
)
def get_related_url(metadata):
urls = set()
for m in metadata:
# p = m['source']
url = m["url"]
if url in urls:
continue
urls.add(url)
category = m["category"]
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
def main(query: str, option: str, temperature: int):
qa = get_retrieval_qa(temperature, option)
try:
result = qa(query)
except InvalidRequestError as e:
return "回答が見つかりませんでした。別な質問をしてみてください", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
html = "<div>" + "\n".join(get_related_url(metadata)) + "</div>"
return result["result"], html
nvdajp_book_qa = gr.Interface(
fn=main,
inputs=[
gr.Textbox(label="query"),
gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"),
gr.Slider(0, 2)
],
outputs=[gr.Textbox(label="answer"), gr.outputs.HTML()],
)
nvdajp_book_qa.launch()