nvdajp-book-qa / app.py
terapyon's picture
update metadata, url and category
f35d932
raw
history blame
1.71 kB
import gradio as gr
from langchain.chains import RetrievalQA
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.vectorstores import Qdrant
from openai.error import InvalidRequestError
from qdrant_client import QdrantClient
from config import DB_CONFIG
PERSIST_DIR_NAME = "nvdajp-book"
def get_retrieval_qa() -> RetrievalQA:
embeddings = OpenAIEmbeddings()
db_url, db_api_key, db_collection_name = DB_CONFIG
client = QdrantClient(url=db_url, api_key=db_api_key)
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
retriever = db.as_retriever()
return RetrievalQA.from_chain_type(
llm=OpenAI(temperature=0), chain_type="stuff", retriever=retriever, return_source_documents=True,
)
def get_related_url(metadata):
urls = set()
for m in metadata:
# p = m['source']
url = m["url"]
if url in urls:
continue
urls.add(url)
category = m["category"]
# print(m)
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
def main(query: str):
qa = get_retrieval_qa()
try:
result = qa(query)
except InvalidRequestError as e:
return "回答が見つかりませんでした。別な質問をしてみてください", str(e)
else:
metadata = [s.metadata for s in result["source_documents"]]
html = "<div>" + "\n".join(get_related_url(metadata)) + "</div>"
return result["result"], html
nvdajp_book_qa = gr.Interface(
fn=main,
inputs=[gr.Textbox(label="query")],
outputs=[gr.Textbox(label="answer"), gr.outputs.HTML()],
)
nvdajp_book_qa.launch()