Spaces:
Paused
Paused
can select model for GPT-4
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from langchain.chains import RetrievalQA
|
3 |
from langchain.embeddings import OpenAIEmbeddings
|
4 |
from langchain.llms import OpenAI
|
|
|
5 |
from langchain.vectorstores import Qdrant
|
6 |
from openai.error import InvalidRequestError
|
7 |
from qdrant_client import QdrantClient
|
@@ -9,13 +10,24 @@ from config import DB_CONFIG
|
|
9 |
|
10 |
|
11 |
PERSIST_DIR_NAME = "nvdajp-book"
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
-
def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA:
|
15 |
embeddings = OpenAIEmbeddings()
|
16 |
db_url, db_api_key, db_collection_name = DB_CONFIG
|
17 |
client = QdrantClient(url=db_url, api_key=db_api_key)
|
18 |
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if option is None or option == "All":
|
20 |
retriever = db.as_retriever()
|
21 |
else:
|
@@ -25,7 +37,13 @@ def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA:
|
|
25 |
}
|
26 |
)
|
27 |
return RetrievalQA.from_chain_type(
|
28 |
-
llm=
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
)
|
30 |
|
31 |
|
@@ -42,8 +60,8 @@ def get_related_url(metadata):
|
|
42 |
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
|
43 |
|
44 |
|
45 |
-
def main(query: str, option: str, temperature: int):
|
46 |
-
qa = get_retrieval_qa(temperature, option)
|
47 |
try:
|
48 |
result = qa(query)
|
49 |
except InvalidRequestError as e:
|
@@ -59,6 +77,7 @@ nvdajp_book_qa = gr.Interface(
|
|
59 |
fn=main,
|
60 |
inputs=[
|
61 |
gr.Textbox(label="query"),
|
|
|
62 |
gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"),
|
63 |
gr.Slider(0, 2)
|
64 |
],
|
|
|
2 |
from langchain.chains import RetrievalQA
|
3 |
from langchain.embeddings import OpenAIEmbeddings
|
4 |
from langchain.llms import OpenAI
|
5 |
+
from langchain.chat_models import ChatOpenAI
|
6 |
from langchain.vectorstores import Qdrant
|
7 |
from openai.error import InvalidRequestError
|
8 |
from qdrant_client import QdrantClient
|
|
|
10 |
|
11 |
|
12 |
PERSIST_DIR_NAME = "nvdajp-book"
|
13 |
+
# MODEL_NAME = "text-davinci-003"
|
14 |
+
# MODEL_NAME = "gpt-3.5-turbo"
|
15 |
+
# MODEL_NAME = "gpt-4"
|
16 |
|
17 |
|
18 |
+
def get_retrieval_qa(model_name: str | None, temperature: int, option: str | None) -> RetrievalQA:
|
19 |
embeddings = OpenAIEmbeddings()
|
20 |
db_url, db_api_key, db_collection_name = DB_CONFIG
|
21 |
client = QdrantClient(url=db_url, api_key=db_api_key)
|
22 |
db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings)
|
23 |
+
if model_name is None:
|
24 |
+
model = "gpt-3.5-turbo"
|
25 |
+
elif model_name == "GPT-3.5":
|
26 |
+
model = "gpt-3.5-turbo"
|
27 |
+
elif model_name == "GPT-4":
|
28 |
+
model = "gpt-4"
|
29 |
+
else:
|
30 |
+
model = "gpt-3.5-turbo"
|
31 |
if option is None or option == "All":
|
32 |
retriever = db.as_retriever()
|
33 |
else:
|
|
|
37 |
}
|
38 |
)
|
39 |
return RetrievalQA.from_chain_type(
|
40 |
+
llm=ChatOpenAI(
|
41 |
+
model=model,
|
42 |
+
temperature=temperature
|
43 |
+
),
|
44 |
+
chain_type="stuff",
|
45 |
+
retriever=retriever,
|
46 |
+
return_source_documents=True,
|
47 |
)
|
48 |
|
49 |
|
|
|
60 |
yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>'
|
61 |
|
62 |
|
63 |
+
def main(query: str, model_name: str, option: str, temperature: int):
|
64 |
+
qa = get_retrieval_qa(model_name, temperature, option)
|
65 |
try:
|
66 |
result = qa(query)
|
67 |
except InvalidRequestError as e:
|
|
|
77 |
fn=main,
|
78 |
inputs=[
|
79 |
gr.Textbox(label="query"),
|
80 |
+
gr.Radio(["GPT-3.5", "GPT-4"], label="Model", info="選択なしで「3.5」を使用"),
|
81 |
gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"),
|
82 |
gr.Slider(0, 2)
|
83 |
],
|