File size: 3,444 Bytes
1051b11
fbf5042
 
 
 
 
 
 
3496484
924cd68
 
fbf5042
 
 
 
dc78d1c
fbf5042
 
 
 
 
 
 
 
 
 
1051b11
 
 
 
 
 
 
fbf5042
924cd68
fbf5042
 
 
924cd68
fbf5042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
924cd68
fbf5042
 
 
 
8f05d21
fbf5042
8f05d21
fbf5042
 
 
924cd68
 
 
 
 
fbf5042
924cd68
fbf5042
924cd68
fbf5042
 
 
 
8f05d21
fbf5042
8f05d21
fbf5042
 
 
924cd68
 
 
 
 
fbf5042
 
924cd68
 
 
 
 
 
 
3496484
924cd68
 
 
 
 
 
 
 
3496484
924cd68
 
 
 
 
 
1f643c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import base64
import re
import json
import pandas as pd
import gradio as gr
import pyterrier as pt
pt.init()
import pyt_splade
from pyterrier_gradio import Demo, MarkdownFile, interface, df2code, code2md, EX_Q, EX_D
factory_max = pyt_splade.SpladeFactory(agg='max')
factory_sum = pyt_splade.SpladeFactory(agg='sum')

COLAB_NAME = 'pyterrier_splade.ipynb'
COLAB_INSTALL = '''
!pip install -q git+https://github.com/naver/splade
!pip install -q git+https://github.com/seanmacavaney/pyt_splade@misc
'''.strip()

def generate_vis(df, mode='Document'):
  if len(df) == 0:
    return ''
  result = []
  if mode == 'Document':
    max_score = max(max(t.values()) for t in df['toks'])
  for row in df.itertuples(index=False):
    if mode == 'Query':
      tok_scores = {m.group(2): float(m.group(1)) for m in re.finditer(r'#combine:0=([0-9.]+)\((#base64\([^)]+\)|[^)]+)\)', row.query)}
      for key, value in list(tok_scores.items()):
        if key.startswith('#base64('):
          b64 = re.search('#base64\(([^)]+)\)', key).group(1)
          del tok_scores[key]
          key = base64.b64decode(b64).decode()
          tok_scores[key] = value
      max_score = max(tok_scores.values())
      orig_tokens = factory_max.tokenizer.tokenize(row.query_0)
      id = row.qid
    else:
      tok_scores = row.toks
      orig_tokens = factory_max.tokenizer.tokenize(row.text)
      id = row.docno
    def toks2span(toks):
      return '<kbd> </kbd>'.join(f'<kbd style="background-color: rgba(66, 135, 245, {tok_scores.get(t, 0)/max_score});">{t}</kbd>' for t in toks)
    orig_tokens_set = set(orig_tokens)
    exp_tokens = [t for t, v in sorted(tok_scores.items(), key=lambda x: (-x[1], x[0])) if t not in orig_tokens_set]
    result.append(f'''
<div style="font-size: 1.2em;">{mode}: <strong>{id}</strong></div>
<div style="margin: 4px 0 16px; padding: 4px; border: 1px solid black;">
<div>
{toks2span(orig_tokens)}
</div>
<div><strong>Expansion Tokens:</strong> {toks2span(exp_tokens)}</div>
</div>
''')
  return '\n'.join(result)

def predict_query(input, agg):
  code = f'''import pandas as pd
import pyterrier as pt ; pt.init()
import pyt_splade

splade = pyt_splade.SpladeFactory(agg={repr(agg)})

query_pipeline = splade.query()

query_pipeline({df2code(input)})
'''
  pipeline = {
    'max': factory_max,
    'sum': factory_sum
  }[agg].query()
  res = pipeline(input)
  vis = generate_vis(res, mode='Query')
  return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)

def predict_doc(input, agg):
  code = f'''import pandas as pd
import pyterrier as pt ; pt.init()
import pyt_splade

splade = pyt_splade.SpladeFactory(agg={repr(agg)})

doc_pipeline = splade.indexing()

doc_pipeline({df2code(input)})
'''
  pipeline = {
    'max': factory_max,
    'sum': factory_sum
  }[agg].indexing()
  res = pipeline(input)
  vis = generate_vis(res, mode='Document')
  res['toks'] = [json.dumps({k: round(v, 4) for k, v in t.items()}) for t in res['toks']]
  return (res, code2md(code, COLAB_INSTALL, COLAB_NAME), vis)

interface(
  MarkdownFile('README.md'),
  MarkdownFile('query.md'),
  Demo(
    predict_query,
    EX_Q,
    [
      gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
    ],
    scale=2/3
  ),
  MarkdownFile('doc.md'),
  Demo(
    predict_doc,
    EX_D,
    [
      gr.Dropdown(choices=['max', 'sum'], value='max', label='Aggregation'),
    ],
    scale=2/3
  ),
  MarkdownFile('wrapup.md'),
).launch(share=False)