File size: 6,441 Bytes
5cb9c90
 
 
 
57d9268
5cb9c90
 
57d9268
 
5cb9c90
57d9268
5cb9c90
 
 
 
 
57d9268
 
 
 
 
 
 
5cb9c90
 
 
 
57d9268
 
 
 
 
 
 
5cb9c90
 
 
57d9268
 
 
 
 
 
 
 
5cb9c90
 
 
57d9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9c90
 
57d9268
5cb9c90
 
 
 
 
 
 
 
 
57d9268
 
5cb9c90
 
57d9268
 
 
5cb9c90
 
 
57d9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9c90
 
57d9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9c90
27c943a
5cb9c90
57d9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57d9268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cb9c90
 
 
57d9268
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# coding=utf-8

import base64
import io
import os
import re

import gradio as gr
import librosa
import numpy as np
import spaces
import torch
import torchaudio
from funasr import AutoModel

model = "FunAudioLLM/SenseVoiceSmall"
model = AutoModel(
    model=model,
    vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
    vad_kwargs={"max_single_segment_time": 30000},
    hub="hf",
    device="cuda",
)

import re

emo_dict = {
    "<|HAPPY|>": "๐Ÿ˜Š",
    "<|SAD|>": "๐Ÿ˜”",
    "<|ANGRY|>": "๐Ÿ˜ก",
    "<|NEUTRAL|>": "",
    "<|FEARFUL|>": "๐Ÿ˜ฐ",
    "<|DISGUSTED|>": "๐Ÿคข",
    "<|SURPRISED|>": "๐Ÿ˜ฎ",
}

event_dict = {
    "<|BGM|>": "๐ŸŽผ",
    "<|Speech|>": "",
    "<|Applause|>": "๐Ÿ‘",
    "<|Laughter|>": "๐Ÿ˜€",
    "<|Cry|>": "๐Ÿ˜ญ",
    "<|Sneeze|>": "๐Ÿคง",
    "<|Breath|>": "",
    "<|Cough|>": "๐Ÿคง",
}

emoji_dict = {
    "<|nospeech|><|Event_UNK|>": "โ“",
    "<|zh|>": "",
    "<|en|>": "",
    "<|yue|>": "",
    "<|ja|>": "",
    "<|ko|>": "",
    "<|nospeech|>": "",
    "<|HAPPY|>": "๐Ÿ˜Š",
    "<|SAD|>": "๐Ÿ˜”",
    "<|ANGRY|>": "๐Ÿ˜ก",
    "<|NEUTRAL|>": "",
    "<|BGM|>": "๐ŸŽผ",
    "<|Speech|>": "",
    "<|Applause|>": "๐Ÿ‘",
    "<|Laughter|>": "๐Ÿ˜€",
    "<|FEARFUL|>": "๐Ÿ˜ฐ",
    "<|DISGUSTED|>": "๐Ÿคข",
    "<|SURPRISED|>": "๐Ÿ˜ฎ",
    "<|Cry|>": "๐Ÿ˜ญ",
    "<|EMO_UNKNOWN|>": "",
    "<|Sneeze|>": "๐Ÿคง",
    "<|Breath|>": "",
    "<|Cough|>": "๐Ÿ˜ท",
    "<|Sing|>": "",
    "<|Speech_Noise|>": "",
    "<|withitn|>": "",
    "<|woitn|>": "",
    "<|GBG|>": "",
    "<|Event_UNK|>": "",
}

lang_dict = {
    "<|zh|>": "<|lang|>",
    "<|en|>": "<|lang|>",
    "<|yue|>": "<|lang|>",
    "<|ja|>": "<|lang|>",
    "<|ko|>": "<|lang|>",
    "<|nospeech|>": "<|lang|>",
}

emo_set = {"๐Ÿ˜Š", "๐Ÿ˜”", "๐Ÿ˜ก", "๐Ÿ˜ฐ", "๐Ÿคข", "๐Ÿ˜ฎ"}
event_set = {"๐ŸŽผ", "๐Ÿ‘", "๐Ÿ˜€", "๐Ÿ˜ญ", "๐Ÿคง", "๐Ÿ˜ท"}


def format_str(s):
    for sptk in emoji_dict:
        s = s.replace(sptk, emoji_dict[sptk])
    return s


def format_str_v2(s):
    sptk_dict = {}
    for sptk in emoji_dict:
        sptk_dict[sptk] = s.count(sptk)
        s = s.replace(sptk, "")
    emo = "<|NEUTRAL|>"
    for e in emo_dict:
        if sptk_dict[e] > sptk_dict[emo]:
            emo = e
    for e in event_dict:
        if sptk_dict[e] > 0:
            s = event_dict[e] + s
    s = s + emo_dict[emo]

    for emoji in emo_set.union(event_set):
        s = s.replace(" " + emoji, emoji)
        s = s.replace(emoji + " ", emoji)
    return s.strip()


def format_str_v3(s):
    def get_emo(s):
        return s[-1] if s[-1] in emo_set else None

    def get_event(s):
        return s[0] if s[0] in event_set else None

    s = s.replace("<|nospeech|><|Event_UNK|>", "โ“")
    for lang in lang_dict:
        s = s.replace(lang, "<|lang|>")
    s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
    new_s = " " + s_list[0]
    cur_ent_event = get_event(new_s)
    for i in range(1, len(s_list)):
        if len(s_list[i]) == 0:
            continue
        if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
            s_list[i] = s_list[i][1:]
        # else:
        cur_ent_event = get_event(s_list[i])
        if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
            new_s = new_s[:-1]
        new_s += s_list[i].strip().lstrip()
    new_s = new_s.replace("The.", " ")
    return new_s.strip()


@spaces.GPU
def model_inference(input_wav, language, fs=16000):
    # task_abbr = {"Speech Recognition": "ASR", "Rich Text Transcription": ("ASR", "AED", "SER")}
    language_abbr = {
        "auto": "auto",
        "zh": "zh",
        "en": "en",
        "yue": "yue",
        "ja": "ja",
        "ko": "ko",
        "nospeech": "nospeech",
    }

    # task = "Speech Recognition" if task is None else task
    language = "auto" if len(language) < 1 else language
    selected_language = language_abbr[language]
    # selected_task = task_abbr.get(task)

    # print(f"input_wav: {type(input_wav)}, {input_wav[1].shape}, {input_wav}")

    if isinstance(input_wav, tuple):
        fs, input_wav = input_wav
        input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
        if len(input_wav.shape) > 1:
            input_wav = input_wav.mean(-1)
        if fs != 16000:
            print(f"audio_fs: {fs}")
            resampler = torchaudio.transforms.Resample(fs, 16000)
            input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
            input_wav = resampler(input_wav_t[None, :])[0, :].numpy()

    merge_vad = True  # False if selected_task == "ASR" else True
    print(f"language: {language}, merge_vad: {merge_vad}")
    text = model.generate(
        input=input_wav,
        cache={},
        language=language,
        use_itn=True,
        batch_size_s=500,
        merge_vad=merge_vad,
    )

    print(text)
    text = text[0]["text"]
    text = format_str_v3(text)

    print(text)

    return text


audio_examples = [
    ["example/zh.mp3", "zh"],
    ["example/yue.mp3", "yue"],
    ["example/en.mp3", "en"],
    ["example/ja.mp3", "ja"],
    ["example/ko.mp3", "ko"],
    ["example/emo_1.wav", "auto"],
    ["example/emo_2.wav", "auto"],
    ["example/emo_3.wav", "auto"],
    ["example/rich_1.wav", "auto"],
    ["example/rich_2.wav", "auto"],
    ["example/longwav_1.wav", "auto"],
    ["example/longwav_2.wav", "auto"],
    ["example/longwav_3.wav", "auto"],
]


def launch():
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        with gr.Row():
            with gr.Column():
                audio_inputs = gr.Audio(label="Upload audio or use the microphone")

                with gr.Accordion("Configuration"):
                    language_inputs = gr.Dropdown(
                        choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
                        value="auto",
                        label="Language",
                    )
                fn_button = gr.Button("Start", variant="primary")
                text_outputs = gr.Textbox(label="Results")
            gr.Examples(
                examples=audio_examples,
                inputs=[audio_inputs, language_inputs],
                examples_per_page=20,
            )

        fn_button.click(
            model_inference,
            inputs=[audio_inputs, language_inputs],
            outputs=text_outputs,
        )

    demo.launch()


if __name__ == "__main__":
    # iface.launch()
    launch()