Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
40 |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
41 |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
42 |
|
43 |
-
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to(
|
44 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
46 |
"THUDM/CogVideoX-5b",
|
@@ -50,7 +50,7 @@ pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
|
50 |
tokenizer=pipe.tokenizer,
|
51 |
text_encoder=pipe.text_encoder,
|
52 |
torch_dtype=torch.bfloat16,
|
53 |
-
).to(
|
54 |
|
55 |
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
56 |
"THUDM/CogVideoX-5b-I2V",
|
@@ -62,7 +62,7 @@ pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
|
62 |
tokenizer=pipe.tokenizer,
|
63 |
text_encoder=pipe.text_encoder,
|
64 |
torch_dtype=torch.bfloat16,
|
65 |
-
).to(
|
66 |
|
67 |
|
68 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
@@ -229,6 +229,7 @@ def infer(
|
|
229 |
|
230 |
if video_input is not None:
|
231 |
video = load_video(video_input)[:49] # Limit to 49 frames
|
|
|
232 |
video_pt = pipe_video(
|
233 |
video=video,
|
234 |
prompt=prompt,
|
@@ -240,7 +241,9 @@ def infer(
|
|
240 |
guidance_scale=guidance_scale,
|
241 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
242 |
).frames
|
|
|
243 |
elif image_input is not None:
|
|
|
244 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
245 |
image = load_image(image_input)
|
246 |
video_pt = pipe_image(
|
@@ -253,7 +256,9 @@ def infer(
|
|
253 |
guidance_scale=guidance_scale,
|
254 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
255 |
).frames
|
|
|
256 |
else:
|
|
|
257 |
video_pt = pipe(
|
258 |
prompt=prompt,
|
259 |
num_videos_per_prompt=1,
|
@@ -264,7 +269,7 @@ def infer(
|
|
264 |
guidance_scale=guidance_scale,
|
265 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
266 |
).frames
|
267 |
-
|
268 |
return (video_pt, seed)
|
269 |
|
270 |
|
|
|
40 |
hf_hub_download(repo_id="ai-forever/Real-ESRGAN", filename="RealESRGAN_x4.pth", local_dir="model_real_esran")
|
41 |
snapshot_download(repo_id="AlexWortega/RIFE", local_dir="model_rife")
|
42 |
|
43 |
+
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cpu")
|
44 |
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
45 |
pipe_video = CogVideoXVideoToVideoPipeline.from_pretrained(
|
46 |
"THUDM/CogVideoX-5b",
|
|
|
50 |
tokenizer=pipe.tokenizer,
|
51 |
text_encoder=pipe.text_encoder,
|
52 |
torch_dtype=torch.bfloat16,
|
53 |
+
).to("cpu")
|
54 |
|
55 |
pipe_image = CogVideoXImageToVideoPipeline.from_pretrained(
|
56 |
"THUDM/CogVideoX-5b-I2V",
|
|
|
62 |
tokenizer=pipe.tokenizer,
|
63 |
text_encoder=pipe.text_encoder,
|
64 |
torch_dtype=torch.bfloat16,
|
65 |
+
).to("cpu")
|
66 |
|
67 |
|
68 |
# pipe.transformer.to(memory_format=torch.channels_last)
|
|
|
229 |
|
230 |
if video_input is not None:
|
231 |
video = load_video(video_input)[:49] # Limit to 49 frames
|
232 |
+
pipe_video.to(device)
|
233 |
video_pt = pipe_video(
|
234 |
video=video,
|
235 |
prompt=prompt,
|
|
|
241 |
guidance_scale=guidance_scale,
|
242 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
243 |
).frames
|
244 |
+
pipe_video.to("cpu")
|
245 |
elif image_input is not None:
|
246 |
+
pipe_image.to(device)
|
247 |
image_input = Image.fromarray(image_input).resize(size=(720, 480)) # Convert to PIL
|
248 |
image = load_image(image_input)
|
249 |
video_pt = pipe_image(
|
|
|
256 |
guidance_scale=guidance_scale,
|
257 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
258 |
).frames
|
259 |
+
pipe_image.to("cpu")
|
260 |
else:
|
261 |
+
pipe.to(device)
|
262 |
video_pt = pipe(
|
263 |
prompt=prompt,
|
264 |
num_videos_per_prompt=1,
|
|
|
269 |
guidance_scale=guidance_scale,
|
270 |
generator=torch.Generator(device="cpu").manual_seed(seed),
|
271 |
).frames
|
272 |
+
pipe.to("cpu")
|
273 |
return (video_pt, seed)
|
274 |
|
275 |
|