Spaces:
Runtime error
Runtime error
checkpoint_config = dict(interval=10) | |
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) | |
log_level = 'INFO' | |
load_from = None | |
resume_from = None | |
dist_params = dict(backend='nccl') | |
workflow = [('train', 1)] | |
opencv_num_threads = 0 | |
mp_start_method = 'fork' | |
dataset_info = dict( | |
dataset_name='coco', | |
paper_info=dict( | |
author= | |
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
title='Microsoft coco: Common objects in context', | |
container='European conference on computer vision', | |
year='2014', | |
homepage='http://cocodataset.org/'), | |
keypoint_info=dict({ | |
0: | |
dict(name='nose', id=0, color=[51, 153, 255], type='upper', swap=''), | |
1: | |
dict( | |
name='left_eye', | |
id=1, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_eye'), | |
2: | |
dict( | |
name='right_eye', | |
id=2, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_eye'), | |
3: | |
dict( | |
name='left_ear', | |
id=3, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_ear'), | |
4: | |
dict( | |
name='right_ear', | |
id=4, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_ear'), | |
5: | |
dict( | |
name='left_shoulder', | |
id=5, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_shoulder'), | |
6: | |
dict( | |
name='right_shoulder', | |
id=6, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_shoulder'), | |
7: | |
dict( | |
name='left_elbow', | |
id=7, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_elbow'), | |
8: | |
dict( | |
name='right_elbow', | |
id=8, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_elbow'), | |
9: | |
dict( | |
name='left_wrist', | |
id=9, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_wrist'), | |
10: | |
dict( | |
name='right_wrist', | |
id=10, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_wrist'), | |
11: | |
dict( | |
name='left_hip', | |
id=11, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_hip'), | |
12: | |
dict( | |
name='right_hip', | |
id=12, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_hip'), | |
13: | |
dict( | |
name='left_knee', | |
id=13, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_knee'), | |
14: | |
dict( | |
name='right_knee', | |
id=14, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_knee'), | |
15: | |
dict( | |
name='left_ankle', | |
id=15, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_ankle'), | |
16: | |
dict( | |
name='right_ankle', | |
id=16, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_ankle') | |
}), | |
skeleton_info=dict({ | |
0: | |
dict(link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
1: | |
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
2: | |
dict(link=('right_ankle', 'right_knee'), id=2, color=[255, 128, 0]), | |
3: | |
dict(link=('right_knee', 'right_hip'), id=3, color=[255, 128, 0]), | |
4: | |
dict(link=('left_hip', 'right_hip'), id=4, color=[51, 153, 255]), | |
5: | |
dict(link=('left_shoulder', 'left_hip'), id=5, color=[51, 153, 255]), | |
6: | |
dict(link=('right_shoulder', 'right_hip'), id=6, color=[51, 153, 255]), | |
7: | |
dict( | |
link=('left_shoulder', 'right_shoulder'), | |
id=7, | |
color=[51, 153, 255]), | |
8: | |
dict(link=('left_shoulder', 'left_elbow'), id=8, color=[0, 255, 0]), | |
9: | |
dict( | |
link=('right_shoulder', 'right_elbow'), id=9, color=[255, 128, 0]), | |
10: | |
dict(link=('left_elbow', 'left_wrist'), id=10, color=[0, 255, 0]), | |
11: | |
dict(link=('right_elbow', 'right_wrist'), id=11, color=[255, 128, 0]), | |
12: | |
dict(link=('left_eye', 'right_eye'), id=12, color=[51, 153, 255]), | |
13: | |
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
14: | |
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
15: | |
dict(link=('left_eye', 'left_ear'), id=15, color=[51, 153, 255]), | |
16: | |
dict(link=('right_eye', 'right_ear'), id=16, color=[51, 153, 255]), | |
17: | |
dict(link=('left_ear', 'left_shoulder'), id=17, color=[51, 153, 255]), | |
18: | |
dict( | |
link=('right_ear', 'right_shoulder'), id=18, color=[51, 153, 255]) | |
}), | |
joint_weights=[ | |
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, | |
1.2, 1.5, 1.5 | |
], | |
sigmas=[ | |
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, 0.062, | |
0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
]) | |
evaluation = dict(interval=10, metric='mAP', save_best='AP') | |
optimizer = dict(type='Adam', lr=0.0005) | |
optimizer_config = dict(grad_clip=None) | |
lr_config = dict( | |
policy='step', | |
warmup='linear', | |
warmup_iters=500, | |
warmup_ratio=0.001, | |
step=[170, 200]) | |
total_epochs = 210 | |
channel_cfg = dict( | |
num_output_channels=17, | |
dataset_joints=17, | |
dataset_channel=[[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]) | |
model = dict( | |
type='TopDown', | |
pretrained= | |
'https://download.openmmlab.com/mmpose/pretrain_models/hrnet_w48-8ef0771d.pth', | |
backbone=dict( | |
type='HRNet', | |
in_channels=3, | |
extra=dict( | |
stage1=dict( | |
num_modules=1, | |
num_branches=1, | |
block='BOTTLENECK', | |
num_blocks=(4, ), | |
num_channels=(64, )), | |
stage2=dict( | |
num_modules=1, | |
num_branches=2, | |
block='BASIC', | |
num_blocks=(4, 4), | |
num_channels=(48, 96)), | |
stage3=dict( | |
num_modules=4, | |
num_branches=3, | |
block='BASIC', | |
num_blocks=(4, 4, 4), | |
num_channels=(48, 96, 192)), | |
stage4=dict( | |
num_modules=3, | |
num_branches=4, | |
block='BASIC', | |
num_blocks=(4, 4, 4, 4), | |
num_channels=(48, 96, 192, 384)))), | |
keypoint_head=dict( | |
type='TopdownHeatmapSimpleHead', | |
in_channels=48, | |
out_channels=17, | |
num_deconv_layers=0, | |
extra=dict(final_conv_kernel=1), | |
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)), | |
train_cfg=dict(), | |
test_cfg=dict( | |
flip_test=True, | |
post_process='default', | |
shift_heatmap=True, | |
modulate_kernel=11)) | |
data_cfg = dict( | |
image_size=[192, 256], | |
heatmap_size=[48, 64], | |
num_output_channels=17, | |
num_joints=17, | |
dataset_channel=[[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
], | |
soft_nms=False, | |
nms_thr=1.0, | |
oks_thr=0.9, | |
vis_thr=0.2, | |
use_gt_bbox=False, | |
det_bbox_thr=0.0, | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
) | |
train_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownRandomFlip', flip_prob=0.5), | |
dict( | |
type='TopDownHalfBodyTransform', | |
num_joints_half_body=8, | |
prob_half_body=0.3), | |
dict( | |
type='TopDownGetRandomScaleRotation', rot_factor=40, scale_factor=0.5), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict(type='TopDownGenerateTarget', sigma=2), | |
dict( | |
type='Collect', | |
keys=['img', 'target', 'target_weight'], | |
meta_keys=[ | |
'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', | |
'rotation', 'bbox_score', 'flip_pairs' | |
]) | |
] | |
val_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
'flip_pairs' | |
]) | |
] | |
test_pipeline = [ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
'flip_pairs' | |
]) | |
] | |
data_root = 'data/coco' | |
data = dict( | |
samples_per_gpu=32, | |
workers_per_gpu=2, | |
val_dataloader=dict(samples_per_gpu=32), | |
test_dataloader=dict(samples_per_gpu=32), | |
train=dict( | |
type='TopDownCocoDataset', | |
ann_file='data/coco/annotations/person_keypoints_train2017.json', | |
img_prefix='data/coco/train2017/', | |
data_cfg=dict( | |
image_size=[192, 256], | |
heatmap_size=[48, 64], | |
num_output_channels=17, | |
num_joints=17, | |
dataset_channel=[[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
], | |
soft_nms=False, | |
nms_thr=1.0, | |
oks_thr=0.9, | |
vis_thr=0.2, | |
use_gt_bbox=False, | |
det_bbox_thr=0.0, | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
), | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownRandomFlip', flip_prob=0.5), | |
dict( | |
type='TopDownHalfBodyTransform', | |
num_joints_half_body=8, | |
prob_half_body=0.3), | |
dict( | |
type='TopDownGetRandomScaleRotation', | |
rot_factor=40, | |
scale_factor=0.5), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict(type='TopDownGenerateTarget', sigma=2), | |
dict( | |
type='Collect', | |
keys=['img', 'target', 'target_weight'], | |
meta_keys=[ | |
'image_file', 'joints_3d', 'joints_3d_visible', 'center', | |
'scale', 'rotation', 'bbox_score', 'flip_pairs' | |
]) | |
], | |
dataset_info=dict( | |
dataset_name='coco', | |
paper_info=dict( | |
author= | |
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
title='Microsoft coco: Common objects in context', | |
container='European conference on computer vision', | |
year='2014', | |
homepage='http://cocodataset.org/'), | |
keypoint_info=dict({ | |
0: | |
dict( | |
name='nose', | |
id=0, | |
color=[51, 153, 255], | |
type='upper', | |
swap=''), | |
1: | |
dict( | |
name='left_eye', | |
id=1, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_eye'), | |
2: | |
dict( | |
name='right_eye', | |
id=2, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_eye'), | |
3: | |
dict( | |
name='left_ear', | |
id=3, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_ear'), | |
4: | |
dict( | |
name='right_ear', | |
id=4, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_ear'), | |
5: | |
dict( | |
name='left_shoulder', | |
id=5, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_shoulder'), | |
6: | |
dict( | |
name='right_shoulder', | |
id=6, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_shoulder'), | |
7: | |
dict( | |
name='left_elbow', | |
id=7, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_elbow'), | |
8: | |
dict( | |
name='right_elbow', | |
id=8, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_elbow'), | |
9: | |
dict( | |
name='left_wrist', | |
id=9, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_wrist'), | |
10: | |
dict( | |
name='right_wrist', | |
id=10, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_wrist'), | |
11: | |
dict( | |
name='left_hip', | |
id=11, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_hip'), | |
12: | |
dict( | |
name='right_hip', | |
id=12, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_hip'), | |
13: | |
dict( | |
name='left_knee', | |
id=13, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_knee'), | |
14: | |
dict( | |
name='right_knee', | |
id=14, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_knee'), | |
15: | |
dict( | |
name='left_ankle', | |
id=15, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_ankle'), | |
16: | |
dict( | |
name='right_ankle', | |
id=16, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_ankle') | |
}), | |
skeleton_info=dict({ | |
0: | |
dict( | |
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
1: | |
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
2: | |
dict( | |
link=('right_ankle', 'right_knee'), | |
id=2, | |
color=[255, 128, 0]), | |
3: | |
dict( | |
link=('right_knee', 'right_hip'), | |
id=3, | |
color=[255, 128, 0]), | |
4: | |
dict( | |
link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
255]), | |
5: | |
dict( | |
link=('left_shoulder', 'left_hip'), | |
id=5, | |
color=[51, 153, 255]), | |
6: | |
dict( | |
link=('right_shoulder', 'right_hip'), | |
id=6, | |
color=[51, 153, 255]), | |
7: | |
dict( | |
link=('left_shoulder', 'right_shoulder'), | |
id=7, | |
color=[51, 153, 255]), | |
8: | |
dict( | |
link=('left_shoulder', 'left_elbow'), | |
id=8, | |
color=[0, 255, 0]), | |
9: | |
dict( | |
link=('right_shoulder', 'right_elbow'), | |
id=9, | |
color=[255, 128, 0]), | |
10: | |
dict( | |
link=('left_elbow', 'left_wrist'), | |
id=10, | |
color=[0, 255, 0]), | |
11: | |
dict( | |
link=('right_elbow', 'right_wrist'), | |
id=11, | |
color=[255, 128, 0]), | |
12: | |
dict( | |
link=('left_eye', 'right_eye'), | |
id=12, | |
color=[51, 153, 255]), | |
13: | |
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
14: | |
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
15: | |
dict( | |
link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
255]), | |
16: | |
dict( | |
link=('right_eye', 'right_ear'), | |
id=16, | |
color=[51, 153, 255]), | |
17: | |
dict( | |
link=('left_ear', 'left_shoulder'), | |
id=17, | |
color=[51, 153, 255]), | |
18: | |
dict( | |
link=('right_ear', 'right_shoulder'), | |
id=18, | |
color=[51, 153, 255]) | |
}), | |
joint_weights=[ | |
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
1.0, 1.2, 1.2, 1.5, 1.5 | |
], | |
sigmas=[ | |
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
])), | |
val=dict( | |
type='TopDownCocoDataset', | |
ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
img_prefix='data/coco/val2017/', | |
data_cfg=dict( | |
image_size=[192, 256], | |
heatmap_size=[48, 64], | |
num_output_channels=17, | |
num_joints=17, | |
dataset_channel=[[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
], | |
soft_nms=False, | |
nms_thr=1.0, | |
oks_thr=0.9, | |
vis_thr=0.2, | |
use_gt_bbox=False, | |
det_bbox_thr=0.0, | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
), | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
'flip_pairs' | |
]) | |
], | |
dataset_info=dict( | |
dataset_name='coco', | |
paper_info=dict( | |
author= | |
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
title='Microsoft coco: Common objects in context', | |
container='European conference on computer vision', | |
year='2014', | |
homepage='http://cocodataset.org/'), | |
keypoint_info=dict({ | |
0: | |
dict( | |
name='nose', | |
id=0, | |
color=[51, 153, 255], | |
type='upper', | |
swap=''), | |
1: | |
dict( | |
name='left_eye', | |
id=1, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_eye'), | |
2: | |
dict( | |
name='right_eye', | |
id=2, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_eye'), | |
3: | |
dict( | |
name='left_ear', | |
id=3, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_ear'), | |
4: | |
dict( | |
name='right_ear', | |
id=4, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_ear'), | |
5: | |
dict( | |
name='left_shoulder', | |
id=5, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_shoulder'), | |
6: | |
dict( | |
name='right_shoulder', | |
id=6, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_shoulder'), | |
7: | |
dict( | |
name='left_elbow', | |
id=7, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_elbow'), | |
8: | |
dict( | |
name='right_elbow', | |
id=8, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_elbow'), | |
9: | |
dict( | |
name='left_wrist', | |
id=9, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_wrist'), | |
10: | |
dict( | |
name='right_wrist', | |
id=10, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_wrist'), | |
11: | |
dict( | |
name='left_hip', | |
id=11, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_hip'), | |
12: | |
dict( | |
name='right_hip', | |
id=12, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_hip'), | |
13: | |
dict( | |
name='left_knee', | |
id=13, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_knee'), | |
14: | |
dict( | |
name='right_knee', | |
id=14, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_knee'), | |
15: | |
dict( | |
name='left_ankle', | |
id=15, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_ankle'), | |
16: | |
dict( | |
name='right_ankle', | |
id=16, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_ankle') | |
}), | |
skeleton_info=dict({ | |
0: | |
dict( | |
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
1: | |
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
2: | |
dict( | |
link=('right_ankle', 'right_knee'), | |
id=2, | |
color=[255, 128, 0]), | |
3: | |
dict( | |
link=('right_knee', 'right_hip'), | |
id=3, | |
color=[255, 128, 0]), | |
4: | |
dict( | |
link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
255]), | |
5: | |
dict( | |
link=('left_shoulder', 'left_hip'), | |
id=5, | |
color=[51, 153, 255]), | |
6: | |
dict( | |
link=('right_shoulder', 'right_hip'), | |
id=6, | |
color=[51, 153, 255]), | |
7: | |
dict( | |
link=('left_shoulder', 'right_shoulder'), | |
id=7, | |
color=[51, 153, 255]), | |
8: | |
dict( | |
link=('left_shoulder', 'left_elbow'), | |
id=8, | |
color=[0, 255, 0]), | |
9: | |
dict( | |
link=('right_shoulder', 'right_elbow'), | |
id=9, | |
color=[255, 128, 0]), | |
10: | |
dict( | |
link=('left_elbow', 'left_wrist'), | |
id=10, | |
color=[0, 255, 0]), | |
11: | |
dict( | |
link=('right_elbow', 'right_wrist'), | |
id=11, | |
color=[255, 128, 0]), | |
12: | |
dict( | |
link=('left_eye', 'right_eye'), | |
id=12, | |
color=[51, 153, 255]), | |
13: | |
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
14: | |
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
15: | |
dict( | |
link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
255]), | |
16: | |
dict( | |
link=('right_eye', 'right_ear'), | |
id=16, | |
color=[51, 153, 255]), | |
17: | |
dict( | |
link=('left_ear', 'left_shoulder'), | |
id=17, | |
color=[51, 153, 255]), | |
18: | |
dict( | |
link=('right_ear', 'right_shoulder'), | |
id=18, | |
color=[51, 153, 255]) | |
}), | |
joint_weights=[ | |
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
1.0, 1.2, 1.2, 1.5, 1.5 | |
], | |
sigmas=[ | |
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
])), | |
test=dict( | |
type='TopDownCocoDataset', | |
ann_file='data/coco/annotations/person_keypoints_val2017.json', | |
img_prefix='data/coco/val2017/', | |
data_cfg=dict( | |
image_size=[192, 256], | |
heatmap_size=[48, 64], | |
num_output_channels=17, | |
num_joints=17, | |
dataset_channel=[[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
]], | |
inference_channel=[ | |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | |
], | |
soft_nms=False, | |
nms_thr=1.0, | |
oks_thr=0.9, | |
vis_thr=0.2, | |
use_gt_bbox=False, | |
det_bbox_thr=0.0, | |
bbox_file= | |
'data/coco/person_detection_results/COCO_val2017_detections_AP_H_56_person.json' | |
), | |
pipeline=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='TopDownAffine'), | |
dict(type='ToTensor'), | |
dict( | |
type='NormalizeTensor', | |
mean=[0.485, 0.456, 0.406], | |
std=[0.229, 0.224, 0.225]), | |
dict( | |
type='Collect', | |
keys=['img'], | |
meta_keys=[ | |
'image_file', 'center', 'scale', 'rotation', 'bbox_score', | |
'flip_pairs' | |
]) | |
], | |
dataset_info=dict( | |
dataset_name='coco', | |
paper_info=dict( | |
author= | |
'Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence', | |
title='Microsoft coco: Common objects in context', | |
container='European conference on computer vision', | |
year='2014', | |
homepage='http://cocodataset.org/'), | |
keypoint_info=dict({ | |
0: | |
dict( | |
name='nose', | |
id=0, | |
color=[51, 153, 255], | |
type='upper', | |
swap=''), | |
1: | |
dict( | |
name='left_eye', | |
id=1, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_eye'), | |
2: | |
dict( | |
name='right_eye', | |
id=2, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_eye'), | |
3: | |
dict( | |
name='left_ear', | |
id=3, | |
color=[51, 153, 255], | |
type='upper', | |
swap='right_ear'), | |
4: | |
dict( | |
name='right_ear', | |
id=4, | |
color=[51, 153, 255], | |
type='upper', | |
swap='left_ear'), | |
5: | |
dict( | |
name='left_shoulder', | |
id=5, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_shoulder'), | |
6: | |
dict( | |
name='right_shoulder', | |
id=6, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_shoulder'), | |
7: | |
dict( | |
name='left_elbow', | |
id=7, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_elbow'), | |
8: | |
dict( | |
name='right_elbow', | |
id=8, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_elbow'), | |
9: | |
dict( | |
name='left_wrist', | |
id=9, | |
color=[0, 255, 0], | |
type='upper', | |
swap='right_wrist'), | |
10: | |
dict( | |
name='right_wrist', | |
id=10, | |
color=[255, 128, 0], | |
type='upper', | |
swap='left_wrist'), | |
11: | |
dict( | |
name='left_hip', | |
id=11, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_hip'), | |
12: | |
dict( | |
name='right_hip', | |
id=12, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_hip'), | |
13: | |
dict( | |
name='left_knee', | |
id=13, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_knee'), | |
14: | |
dict( | |
name='right_knee', | |
id=14, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_knee'), | |
15: | |
dict( | |
name='left_ankle', | |
id=15, | |
color=[0, 255, 0], | |
type='lower', | |
swap='right_ankle'), | |
16: | |
dict( | |
name='right_ankle', | |
id=16, | |
color=[255, 128, 0], | |
type='lower', | |
swap='left_ankle') | |
}), | |
skeleton_info=dict({ | |
0: | |
dict( | |
link=('left_ankle', 'left_knee'), id=0, color=[0, 255, 0]), | |
1: | |
dict(link=('left_knee', 'left_hip'), id=1, color=[0, 255, 0]), | |
2: | |
dict( | |
link=('right_ankle', 'right_knee'), | |
id=2, | |
color=[255, 128, 0]), | |
3: | |
dict( | |
link=('right_knee', 'right_hip'), | |
id=3, | |
color=[255, 128, 0]), | |
4: | |
dict( | |
link=('left_hip', 'right_hip'), id=4, color=[51, 153, | |
255]), | |
5: | |
dict( | |
link=('left_shoulder', 'left_hip'), | |
id=5, | |
color=[51, 153, 255]), | |
6: | |
dict( | |
link=('right_shoulder', 'right_hip'), | |
id=6, | |
color=[51, 153, 255]), | |
7: | |
dict( | |
link=('left_shoulder', 'right_shoulder'), | |
id=7, | |
color=[51, 153, 255]), | |
8: | |
dict( | |
link=('left_shoulder', 'left_elbow'), | |
id=8, | |
color=[0, 255, 0]), | |
9: | |
dict( | |
link=('right_shoulder', 'right_elbow'), | |
id=9, | |
color=[255, 128, 0]), | |
10: | |
dict( | |
link=('left_elbow', 'left_wrist'), | |
id=10, | |
color=[0, 255, 0]), | |
11: | |
dict( | |
link=('right_elbow', 'right_wrist'), | |
id=11, | |
color=[255, 128, 0]), | |
12: | |
dict( | |
link=('left_eye', 'right_eye'), | |
id=12, | |
color=[51, 153, 255]), | |
13: | |
dict(link=('nose', 'left_eye'), id=13, color=[51, 153, 255]), | |
14: | |
dict(link=('nose', 'right_eye'), id=14, color=[51, 153, 255]), | |
15: | |
dict( | |
link=('left_eye', 'left_ear'), id=15, color=[51, 153, | |
255]), | |
16: | |
dict( | |
link=('right_eye', 'right_ear'), | |
id=16, | |
color=[51, 153, 255]), | |
17: | |
dict( | |
link=('left_ear', 'left_shoulder'), | |
id=17, | |
color=[51, 153, 255]), | |
18: | |
dict( | |
link=('right_ear', 'right_shoulder'), | |
id=18, | |
color=[51, 153, 255]) | |
}), | |
joint_weights=[ | |
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, | |
1.0, 1.2, 1.2, 1.5, 1.5 | |
], | |
sigmas=[ | |
0.026, 0.025, 0.025, 0.035, 0.035, 0.079, 0.079, 0.072, 0.072, | |
0.062, 0.062, 0.107, 0.107, 0.087, 0.087, 0.089, 0.089 | |
]))) | |