Spaces:
Runtime error
Runtime error
import torch, torchvision | |
from mmcv.ops import get_compiling_cuda_version, get_compiler_version | |
import mmpose | |
import gradio as gr | |
import cv2 | |
from mmpose.apis import (inference_top_down_pose_model, init_pose_model, | |
vis_pose_result, process_mmdet_results) | |
from mmdet.apis import inference_detector, init_detector | |
pose_config = '/configs/topdown_heatmap_hrnet_w48_coco_256x192.py' | |
pose_checkpoint = '/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' | |
det_config = '/configs/faster_rcnn_r50_fpn_1x_coco.py' | |
det_checkpoint = '/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' | |
# initialize pose model | |
pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') | |
# initialize detector | |
det_model = init_detector(det_config, det_checkpoint, device='cpu') | |
def predict(img): | |
mmdet_results = inference_detector(det_model, img) | |
person_results = process_mmdet_results(mmdet_results, cat_id=1) | |
pose_results, returned_outputs = inference_top_down_pose_model( | |
pose_model, | |
img, | |
person_results, | |
bbox_thr=0.3, | |
format='xyxy', | |
dataset=pose_model.cfg.data.test.type) | |
vis_result = vis_pose_result( | |
pose_model, | |
img, | |
pose_results, | |
dataset=pose_model.cfg.data.test.type, | |
show=False) | |
#vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) | |
return vis_result | |
example_list = ['/examples/demo2.png'] | |
title = "Pose estimation" | |
description = "HPE" | |
article = "test MMpose" | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(), | |
outputs=[gr.Image(label='Prediction')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, | |
share=True) | |