import torch, torchvision import sys import subprocess try: from mmcv.ops import get_compiling_cuda_version, get_compiler_version except: subprocess.check_call([sys.executable, '-m', 'mim', 'install', 'mmcv-full==1.5.0']) from mmcv.ops import get_compiling_cuda_version, get_compiler_version import mmpose import gradio as gr import cv2 from mmpose.apis import (inference_top_down_pose_model, init_pose_model, vis_pose_result, process_mmdet_results) from mmdet.apis import inference_detector, init_detector pose_config = '/configs/topdown_heatmap_hrnet_w48_coco_256x192.py' pose_checkpoint = '/hrnet_w48_coco_256x192-b9e0b3ab_20200708.pth' det_config = '/configs/faster_rcnn_r50_fpn_1x_coco.py' det_checkpoint = '/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # initialize pose model pose_model = init_pose_model(pose_config, pose_checkpoint, device='cpu') # initialize detector det_model = init_detector(det_config, det_checkpoint, device='cpu') def predict(img): mmdet_results = inference_detector(det_model, img) person_results = process_mmdet_results(mmdet_results, cat_id=1) pose_results, returned_outputs = inference_top_down_pose_model( pose_model, img, person_results, bbox_thr=0.3, format='xyxy', dataset=pose_model.cfg.data.test.type) vis_result = vis_pose_result( pose_model, img, pose_results, dataset=pose_model.cfg.data.test.type, show=False) #vis_result = cv2.resize(vis_result, dsize=None, fx=0.5, fy=0.5) return vis_result example_list = ['/examples/demo2.png'] title = "Pose estimation" description = "HPE" article = "test MMpose" # Create the Gradio demo demo = gr.Interface(fn=predict, inputs=gr.Image(), outputs=[gr.Image(label='Prediction')], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=False, share=True)