Spaces:
Sleeping
Sleeping
testcolab2
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.document_loaders import DirectoryLoader
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain.chains import ConversationChain
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import (
|
10 |
+
StuffDocumentsChain, LLMChain, ConversationalRetrievalChain
|
11 |
+
)
|
12 |
+
from langchain_core.prompts import PromptTemplate
|
13 |
+
import streamlit as st
|
14 |
+
from PyPDF2 import PdfReader
|
15 |
+
|
16 |
+
css = '''
|
17 |
+
<style>
|
18 |
+
.chat-message {
|
19 |
+
padding: 1.5rem; border-radius: 0.5rem; margin-bottom: 1rem; display: flex
|
20 |
+
}
|
21 |
+
.chat-message.user {
|
22 |
+
background-color: #2b313e
|
23 |
+
}
|
24 |
+
.chat-message.bot {
|
25 |
+
background-color: #475063
|
26 |
+
}
|
27 |
+
.chat-message .avatar {
|
28 |
+
width: 20%;
|
29 |
+
}
|
30 |
+
.chat-message .avatar img {
|
31 |
+
max-width: 78px;
|
32 |
+
max-height: 78px;
|
33 |
+
border-radius: 50%;
|
34 |
+
object-fit: cover;
|
35 |
+
}
|
36 |
+
.chat-message .message {
|
37 |
+
width: 80%;
|
38 |
+
padding: 0 1.5rem;
|
39 |
+
color: #fff;
|
40 |
+
}
|
41 |
+
'''
|
42 |
+
|
43 |
+
bot_template = '''
|
44 |
+
<div class="chat-message bot">
|
45 |
+
<div class="avatar">
|
46 |
+
<img src="https://i.ibb.co/cN0nmSj/Screenshot-2023-05-28-at-02-37-21.png">
|
47 |
+
</div>
|
48 |
+
<div class="message">{{MSG}}</div>
|
49 |
+
</div>
|
50 |
+
'''
|
51 |
+
|
52 |
+
user_template = '''
|
53 |
+
<div class="chat-message user">
|
54 |
+
<div class="avatar">
|
55 |
+
<img src="https://i.ibb.co/rdZC7LZ/Photo-logo-1.png">
|
56 |
+
</div>
|
57 |
+
<div class="message">{{MSG}}</div>
|
58 |
+
</div>
|
59 |
+
'''
|
60 |
+
|
61 |
+
def get_pdf_text(pdf_files):
|
62 |
+
|
63 |
+
text = ""
|
64 |
+
|
65 |
+
for pdf_file in pdf_files:
|
66 |
+
reader = PdfReader(pdf_file)
|
67 |
+
for page in reader.pages:
|
68 |
+
text += page.extract_text()
|
69 |
+
|
70 |
+
return text
|
71 |
+
|
72 |
+
def get_chunk_text(text):
|
73 |
+
|
74 |
+
text_splitter = CharacterTextSplitter(
|
75 |
+
separator = "\n",
|
76 |
+
chunk_size = 1000,
|
77 |
+
chunk_overlap = 200,
|
78 |
+
length_function = len
|
79 |
+
)
|
80 |
+
|
81 |
+
chunks = text_splitter.split_text(text)
|
82 |
+
|
83 |
+
return chunks
|
84 |
+
|
85 |
+
def get_vector_store(text_chunks):
|
86 |
+
|
87 |
+
# For Huggingface Embeddings
|
88 |
+
|
89 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={
|
90 |
+
'device' : 'cpu'
|
91 |
+
})
|
92 |
+
vectorstore = FAISS.from_texts(texts = text_chunks, embedding = embeddings)
|
93 |
+
|
94 |
+
return vectorstore
|
95 |
+
|
96 |
+
|
97 |
+
def get_conversation_chain(vector_store):
|
98 |
+
|
99 |
+
# llm = HuggingFaceHub(repo_id="tiiuae/falcon-40b-instruct", model_kwargs={"temperature":0.5, "max_length":512})
|
100 |
+
|
101 |
+
llm = CTransformers(model='llama-2-7b-chat.ggmlv3.q2_K.bin', # model available here: https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/tree/main
|
102 |
+
model_type='llama',
|
103 |
+
config={'max_new_tokens': 600,
|
104 |
+
'context_length':700,
|
105 |
+
'temperature': 0.01})
|
106 |
+
|
107 |
+
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
|
108 |
+
|
109 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
110 |
+
llm = llm,
|
111 |
+
retriever = vector_store.as_retriever(),
|
112 |
+
memory = memory
|
113 |
+
)
|
114 |
+
|
115 |
+
return conversation_chain
|
116 |
+
|
117 |
+
def handle_user_input(question):
|
118 |
+
|
119 |
+
response = st.session_state.conversation({'question':question})
|
120 |
+
st.session_state.chat_history = response['chat_history']
|
121 |
+
|
122 |
+
for i, message in enumerate(st.session_state.chat_history):
|
123 |
+
if i % 2 == 0:
|
124 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
125 |
+
else:
|
126 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
127 |
+
|
128 |
+
def main():
|
129 |
+
st.set_page_config(page_title='Chat with Your own PDFs', page_icon=':books:')
|
130 |
+
|
131 |
+
st.write(css, unsafe_allow_html=True)
|
132 |
+
|
133 |
+
if "conversation" not in st.session_state:
|
134 |
+
st.session_state.conversation = None
|
135 |
+
|
136 |
+
if "chat_history" not in st.session_state:
|
137 |
+
st.session_state.chat_history = None
|
138 |
+
|
139 |
+
st.header('Chat with Your own PDFs :books:')
|
140 |
+
question = st.text_input("Ask anything to your PDF: ")
|
141 |
+
|
142 |
+
if question:
|
143 |
+
handle_user_input(question)
|
144 |
+
|
145 |
+
with st.sidebar:
|
146 |
+
st.subheader("Upload your Documents Here: ")
|
147 |
+
pdf_files = st.file_uploader("Choose your PDF Files and Press OK", type=['pdf'], accept_multiple_files=True)
|
148 |
+
|
149 |
+
if st.button("OK"):
|
150 |
+
with st.spinner("Processing your PDFs..."):
|
151 |
+
|
152 |
+
# Get PDF Text
|
153 |
+
raw_text = get_pdf_text(pdf_files)
|
154 |
+
|
155 |
+
# Get Text Chunks
|
156 |
+
text_chunks = get_chunk_text(raw_text)
|
157 |
+
|
158 |
+
# Create Vector Store
|
159 |
+
|
160 |
+
vector_store = get_vector_store(text_chunks)
|
161 |
+
st.write("DONE")
|
162 |
+
|
163 |
+
# Create conversation chain
|
164 |
+
|
165 |
+
st.session_state.conversation = get_conversation_chain(vector_store)
|
166 |
+
|
167 |
+
main()
|