Spaces:
Runtime error
Runtime error
import os | |
import cv2 | |
import time | |
import torch | |
import argparse | |
import gradio as gr | |
import io | |
from PIL import Image | |
from numpy import random | |
from pathlib import Path | |
import torch.backends.cudnn as cudnn | |
from models.experimental import attempt_load | |
import keras_ocr | |
import matplotlib.pyplot as plt | |
from numpy import asarray | |
import pytesseract | |
from datetime import date | |
from utils.datasets import LoadStreams, LoadImages | |
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \ | |
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path | |
from utils.plots import plot_one_box | |
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel | |
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt") | |
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt") | |
def detect_Custom(img): | |
model='passport_mrz' # Naming Convention for yolov7 See output file of https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/data | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)') | |
parser.add_argument('--source', type=str, default='Inference/', help='source') | |
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') | |
parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold') | |
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS') | |
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
parser.add_argument('--view-img', action='store_true', help='display results') | |
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') | |
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') | |
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') | |
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3') | |
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') | |
parser.add_argument('--augment', action='store_true', help='augmented inference') | |
parser.add_argument('--update', action='store_true', help='update all models') | |
parser.add_argument('--project', default='runs/detect', help='save results to project/name') | |
parser.add_argument('--name', default='exp', help='save results to project/name') | |
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') | |
parser.add_argument('--trace', action='store_true', help='trace model') | |
opt = parser.parse_args() | |
img.save("Inference/test.jpg") | |
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace | |
save_img = True | |
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( | |
('rtsp://', 'rtmp://', 'http://', 'https://')) | |
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) | |
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) | |
set_logging() | |
device = select_device(opt.device) | |
half = device.type != 'cpu' | |
model = attempt_load(weights, map_location=device) | |
stride = int(model.stride.max()) | |
imgsz = check_img_size(imgsz, s=stride) | |
if trace: | |
model = TracedModel(model, device, opt.img_size) | |
if half: | |
model.half() | |
classify = False | |
if classify: | |
modelc = load_classifier(name='resnet101', n=2) | |
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() | |
vid_path, vid_writer = None, None | |
if webcam: | |
view_img = check_imshow() | |
cudnn.benchmark = True | |
dataset = LoadStreams(source, img_size=imgsz, stride=stride) | |
else: | |
dataset = LoadImages(source, img_size=imgsz, stride=stride) | |
names = model.module.names if hasattr(model, 'module') else model.names | |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] | |
if device.type != 'cpu': | |
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) | |
t0 = time.time() | |
for path, img, im0s, vid_cap in dataset: | |
img = torch.from_numpy(img).to(device) | |
img = img.half() if half else img.float() | |
img /= 255.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
t1 = time_synchronized() | |
with torch.no_grad(): | |
pred = model(img, augment=opt.augment)[0] | |
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) | |
t2 = time_synchronized() | |
if classify: | |
pred = apply_classifier(pred, modelc, img, im0s) | |
for i, det in enumerate(pred): | |
if webcam: | |
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count | |
else: | |
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) | |
p = Path(p) | |
save_path = str(save_dir / p.name) | |
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt | |
s += '%gx%g ' % img.shape[2:] | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] | |
if len(det): | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
for c in det[:, -1].unique(): | |
n = (det[:, -1] == c).sum() | |
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " | |
for *xyxy, conf, cls in reversed(det): | |
if save_txt: | |
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) | |
with open(txt_path + '.txt', 'a') as f: | |
f.write(('%g ' * len(line)).rstrip() % line + '\n') | |
if save_img or view_img: | |
label = f'{names[int(cls)]} {conf:.2f}' | |
if(cls == 1): | |
x1 = int(xyxy[0].item()) | |
y1 = int(xyxy[1].item()) | |
x2 = int(xyxy[2].item()) | |
y2 = int(xyxy[3].item()) | |
orig_img = im0 | |
crop_img = im0[y1:y2, x1:x2] | |
cv2.imwrite('MRZ_1.png', crop_img) | |
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) | |
if view_img: | |
cv2.imshow(str(p), im0) | |
cv2.waitKey(1) | |
if save_img: | |
if dataset.mode == 'image': | |
cv2.imwrite(save_path, im0) | |
else: | |
if vid_path != save_path: | |
vid_path = save_path | |
if isinstance(vid_writer, cv2.VideoWriter): | |
vid_writer.release() | |
if vid_cap: | |
fps = vid_cap.get(cv2.CAP_PROP_FPS) | |
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
else: | |
fps, w, h = 30, im0.shape[1], im0.shape[0] | |
save_path += '.mp4' | |
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) | |
vid_writer.write(im0) | |
output_text = 'This is not a valid Passport' | |
text = pytesseract.image_to_string(Image.open('MRZ_1.png')) | |
text = text.replace(" ", "") | |
text=text[22:28] | |
today = date.today() | |
s = today.strftime('%Y%m%d')[2:] | |
if(text > s): | |
output_text = 'This is a Valid Passport' | |
if save_txt or save_img: | |
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' | |
print(f'Done. ({time.time() - t0:.3f}s)') | |
return [Image.fromarray(im0[:,:,::-1]), output_text] | |
output = gr.Textbox(label="Validation",elem_id="opbox") | |
Custom_description="<center>Custom Training Performed on Colab <a href='https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov7-object-detection-on-custom-data.ipynb?authuser=2#scrollTo=1iqOPKjr22mL' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Model trained with test dataset of 'aadhar-card', 'credit-card','prescription' and 'passport' </center>" | |
Footer = ( | |
"<center>Model Trained by: Owais Ahmad Data Scientist at <b> Thoucentric </b> <a href=\"https://www.linkedin.com/in/owaiskhan9654/\">Visit Profile</a> <br></center>" | |
"<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook\">Link</a> <br></center>" | |
"<center> Kaggle Profile <a href=\"https://www.kaggle.com/owaiskhan9654\">Link</a> <br> </center>" | |
"<center> HuggingFace🤗 Model Deployed Repository <a href=\"https://huggingface.co/owaiskha9654/Yolov7_Custom_Object_Detection\">Link</a> <br></center>" | |
) | |
examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image3.jpeg", "Yolo_v7_Custom_trained_By_Owais",],["Image4.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image5.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image6.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["horses.jpeg", "yolov7"],["horses.jpeg", "yolov7-e6"]] | |
Top_Title="<center>Intelligent Image to Text - IIT </center></a>" | |
css = ".output-image, .input-image, .image-preview {height: 300px !important}" | |
gr.Interface(detect_Custom,gr.Image(type="pil"),[gr.Image(type="pil"),output],css=css,title=Top_Title,examples=examples1,description=Custom_description,article=Footer,cache_examples=False).launch() |