File size: 7,158 Bytes
e66133f
 
 
d533c9c
c17b696
e66133f
d533c9c
072978d
c17b696
 
 
c78ba1a
c17b696
 
 
 
 
e66133f
 
c78ba1a
 
 
 
e66133f
 
c17b696
 
 
 
 
c78ba1a
 
 
 
c17b696
e66133f
c17b696
c78ba1a
 
 
 
 
 
c17b696
 
 
 
e66133f
c17b696
e66133f
 
 
 
c17b696
 
e66133f
 
 
c17b696
 
e66133f
c17b696
e66133f
 
 
 
 
 
 
 
 
 
 
 
 
072978d
ea68dfd
 
 
e66133f
 
 
 
 
 
 
 
072978d
e66133f
ea68dfd
 
e66133f
 
 
 
 
 
 
 
072978d
 
 
 
ea68dfd
 
e66133f
 
c78ba1a
ea68dfd
e66133f
 
 
 
 
ea68dfd
 
e66133f
ea68dfd
e66133f
ea68dfd
072978d
08c6681
ea68dfd
 
 
 
 
 
 
08c6681
e66133f
 
ea68dfd
 
e66133f
072978d
 
 
 
ea68dfd
 
 
 
 
 
 
 
e66133f
 
 
c17b696
 
 
 
d533c9c
 
e66133f
 
 
b7f49a5
 
 
e66133f
b7f49a5
 
 
 
e66133f
b7f49a5
e66133f
 
 
 
d533c9c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from typing import Iterable, Tuple

import torch
import numpy as np
from PIL import Image
from tqdm.auto import tqdm
from librosa.beat import beat_track
from diffusers import DDPMPipeline, DDPMScheduler

from .mel import Mel

VERSION = "1.1.5"


class AudioDiffusion:

    def __init__(self,
                 model_id: str = "teticio/audio-diffusion-256",
                 resolution: int = 256,
                 sample_rate: int = 22050,
                 n_fft: int = 2048,
                 hop_length: int = 512,
                 top_db: int = 80,
                 cuda: bool = torch.cuda.is_available(),
                 progress_bar: Iterable = tqdm):
        """Class for generating audio using Denoising Diffusion Probabilistic Models.

        Args:
            model_id (String): name of model (local directory or Hugging Face Hub)
            resolution (int): size of square mel spectrogram in pixels
            sample_rate (int): sample rate of audio
            n_fft (int): number of Fast Fourier Transforms
            hop_length (int): hop length (a higher number is recommended for lower than 256 y_res)
            top_db (int): loudest in decibels
            cuda (bool): use CUDA?
            progress_bar (iterable): iterable callback for progress updates or None
        """
        self.mel = Mel(x_res=resolution,
                       y_res=resolution,
                       sample_rate=sample_rate,
                       n_fft=n_fft,
                       hop_length=hop_length,
                       top_db=top_db)
        self.model_id = model_id
        self.ddpm = DDPMPipeline.from_pretrained(self.model_id)
        if cuda:
            self.ddpm.to("cuda")
        self.progress_bar = progress_bar or (lambda _: _)

    def generate_spectrogram_and_audio(
        self,
        generator: torch.Generator = None
    ) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
        """Generate random mel spectrogram and convert to audio.

        Args:
            generator (torch.Generator): random number generator or None

        Returns:
            PIL Image: mel spectrogram
            (float, np.ndarray): sample rate and raw audio
        """
        images = self.ddpm(output_type="numpy", generator=generator)["sample"]
        images = (images * 255).round().astype("uint8").transpose(0, 3, 1, 2)
        image = Image.fromarray(images[0][0])
        audio = self.mel.image_to_audio(image)
        return image, (self.mel.get_sample_rate(), audio)

    @torch.no_grad()
    def generate_spectrogram_and_audio_from_audio(
        self,
        audio_file: str = None,
        raw_audio: np.ndarray = None,
        slice: int = 0,
        start_step: int = 0,
        steps: int = None,
        generator: torch.Generator = None,
        mask_start_secs: float = 0,
        mask_end_secs: float = 0
    ) -> Tuple[Image.Image, Tuple[int, np.ndarray]]:
        """Generate random mel spectrogram from audio input and convert to audio.

        Args:
            audio_file (str): must be a file on disk due to Librosa limitation or
            raw_audio (np.ndarray): audio as numpy array
            slice (int): slice number of audio to convert
            start_step (int): step to start from
            steps (int): number of de-noising steps to perform (defaults to num_train_timesteps)
            generator (torch.Generator): random number generator or None
            mask_start_secs (float): number of seconds of audio to mask (not generate) at start
            mask_end_secs (float): number of seconds of audio to mask (not generate) at end

        Returns:
            PIL Image: mel spectrogram
            (float, np.ndarray): sample rate and raw audio
        """

        # It would be better to derive a class from DDPMDiffusionPipeline
        # but currently the return type ImagePipelineOutput cannot be imported.
        if steps is None:
            steps = self.ddpm.scheduler.num_train_timesteps
        scheduler = DDPMScheduler(num_train_timesteps=steps)
        scheduler.set_timesteps(steps)
        mask = None
        images = noise = torch.randn(
            (1, self.ddpm.unet.in_channels, self.ddpm.unet.sample_size,
             self.ddpm.unet.sample_size),
            generator=generator)

        if audio_file is not None or raw_audio is not None:
            self.mel.load_audio(audio_file, raw_audio)
            input_image = self.mel.audio_slice_to_image(slice)
            input_image = np.frombuffer(input_image.tobytes(),
                                        dtype="uint8").reshape(
                                            (input_image.height,
                                             input_image.width))
            input_image = ((input_image / 255) * 2 - 1)

            if start_step > 0:
                images[0, 0] = scheduler.add_noise(
                    torch.tensor(input_image[np.newaxis, np.newaxis, :]),
                    noise, torch.tensor(steps - start_step))

            mask_start = int(mask_start_secs * self.mel.get_sample_rate() /
                             self.mel.hop_length)
            mask_end = int(mask_end_secs * self.mel.get_sample_rate() /
                           self.mel.hop_length)
            mask = scheduler.add_noise(
                torch.tensor(input_image[np.newaxis, np.newaxis, :]), noise,
                torch.tensor(scheduler.timesteps[start_step:]))

        images = images.to(self.ddpm.device)
        for step, t in enumerate(
                self.progress_bar(scheduler.timesteps[start_step:])):
            model_output = self.ddpm.unet(images, t)['sample']
            images = scheduler.step(model_output,
                                    t,
                                    images,
                                    generator=generator)['prev_sample']

            if mask is not None:
                if mask_start > 0:
                    images[0, 0, :, :mask_start] = mask[step,
                                                        0, :, :mask_start]
                if mask_end > 0:
                    images[0, 0, :, -mask_end:] = mask[step, 0, :, -mask_end:]

        images = (images / 2 + 0.5).clamp(0, 1)
        images = images.cpu().permute(0, 2, 3, 1).numpy()

        images = (images * 255).round().astype("uint8").transpose(0, 3, 1, 2)
        image = Image.fromarray(images[0][0])
        audio = self.mel.image_to_audio(image)
        return image, (self.mel.get_sample_rate(), audio)

    @staticmethod
    def loop_it(audio: np.ndarray,
                sample_rate: int,
                loops: int = 12) -> np.ndarray:
        """Loop audio

        Args:
            audio (np.ndarray): audio as numpy array
            sample_rate (int): sample rate of audio
            loops (int): number of times to loop

        Returns:
            (float, np.ndarray): sample rate and raw audio or None
        """
        _, beats = beat_track(y=audio, sr=sample_rate, units='samples')
        for beats_in_bar in [16, 12, 8, 4]:
            if len(beats) > beats_in_bar:
                return np.tile(audio[beats[0]:beats[beats_in_bar]], loops)
        return None