Spaces:
Runtime error
Runtime error
from math import acos, sin | |
from typing import Iterable, Tuple, Union, List | |
import torch | |
import numpy as np | |
from PIL import Image | |
from tqdm.auto import tqdm | |
from librosa.beat import beat_track | |
from diffusers import (DiffusionPipeline, UNet2DConditionModel, DDIMScheduler, | |
DDPMScheduler, AutoencoderKL) | |
from .mel import Mel | |
VERSION = "1.2.4" | |
class AudioDiffusion: | |
def __init__(self, | |
model_id: str = "teticio/audio-diffusion-256", | |
sample_rate: int = 22050, | |
n_fft: int = 2048, | |
hop_length: int = 512, | |
top_db: int = 80, | |
cuda: bool = torch.cuda.is_available(), | |
progress_bar: Iterable = tqdm): | |
"""Class for generating audio using De-noising Diffusion Probabilistic Models. | |
Args: | |
model_id (String): name of model (local directory or Hugging Face Hub) | |
sample_rate (int): sample rate of audio | |
n_fft (int): number of Fast Fourier Transforms | |
hop_length (int): hop length (a higher number is recommended for lower than 256 y_res) | |
top_db (int): loudest in decibels | |
cuda (bool): use CUDA? | |
progress_bar (iterable): iterable callback for progress updates or None | |
""" | |
self.model_id = model_id | |
pipeline = { | |
'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline, | |
'AudioDiffusionPipeline': AudioDiffusionPipeline | |
}.get( | |
DiffusionPipeline.get_config_dict(self.model_id)['_class_name'], | |
AudioDiffusionPipeline) | |
self.pipe = pipeline.from_pretrained(self.model_id) | |
if cuda: | |
self.pipe.to("cuda") | |
self.progress_bar = progress_bar or (lambda _: _) | |
# For backwards compatibility | |
sample_size = (self.pipe.unet.sample_size, | |
self.pipe.unet.sample_size) if type( | |
self.pipe.unet.sample_size | |
) == int else self.pipe.unet.sample_size | |
self.mel = Mel(x_res=sample_size[1], | |
y_res=sample_size[0], | |
sample_rate=sample_rate, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
top_db=top_db) | |
def generate_spectrogram_and_audio( | |
self, | |
steps: int = None, | |
generator: torch.Generator = None, | |
step_generator: torch.Generator = None, | |
eta: float = 0, | |
noise: torch.Tensor = None | |
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]: | |
"""Generate random mel spectrogram and convert to audio. | |
Args: | |
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM) | |
generator (torch.Generator): random number generator or None | |
step_generator (torch.Generator): random number generator used to de-noise or None | |
eta (float): parameter between 0 and 1 used with DDIM scheduler | |
noise (torch.Tensor): noisy image or None | |
Returns: | |
PIL Image: mel spectrogram | |
(float, np.ndarray): sample rate and raw audio | |
""" | |
images, (sample_rate, | |
audios) = self.pipe(mel=self.mel, | |
batch_size=1, | |
steps=steps, | |
generator=generator, | |
step_generator=step_generator, | |
eta=eta, | |
noise=noise) | |
return images[0], (sample_rate, audios[0]) | |
def generate_spectrogram_and_audio_from_audio( | |
self, | |
audio_file: str = None, | |
raw_audio: np.ndarray = None, | |
slice: int = 0, | |
start_step: int = 0, | |
steps: int = None, | |
generator: torch.Generator = None, | |
mask_start_secs: float = 0, | |
mask_end_secs: float = 0, | |
step_generator: torch.Generator = None, | |
eta: float = 0, | |
noise: torch.Tensor = None | |
) -> Tuple[Image.Image, Tuple[int, np.ndarray]]: | |
"""Generate random mel spectrogram from audio input and convert to audio. | |
Args: | |
audio_file (str): must be a file on disk due to Librosa limitation or | |
raw_audio (np.ndarray): audio as numpy array | |
slice (int): slice number of audio to convert | |
start_step (int): step to start from | |
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM) | |
generator (torch.Generator): random number generator or None | |
mask_start_secs (float): number of seconds of audio to mask (not generate) at start | |
mask_end_secs (float): number of seconds of audio to mask (not generate) at end | |
step_generator (torch.Generator): random number generator used to de-noise or None | |
eta (float): parameter between 0 and 1 used with DDIM scheduler | |
noise (torch.Tensor): noisy image or None | |
Returns: | |
PIL Image: mel spectrogram | |
(float, np.ndarray): sample rate and raw audio | |
""" | |
images, (sample_rate, | |
audios) = self.pipe(mel=self.mel, | |
batch_size=1, | |
audio_file=audio_file, | |
raw_audio=raw_audio, | |
slice=slice, | |
start_step=start_step, | |
steps=steps, | |
generator=generator, | |
mask_start_secs=mask_start_secs, | |
mask_end_secs=mask_end_secs, | |
step_generator=step_generator, | |
eta=eta, | |
noise=noise) | |
return images[0], (sample_rate, audios[0]) | |
def loop_it(audio: np.ndarray, | |
sample_rate: int, | |
loops: int = 12) -> np.ndarray: | |
"""Loop audio | |
Args: | |
audio (np.ndarray): audio as numpy array | |
sample_rate (int): sample rate of audio | |
loops (int): number of times to loop | |
Returns: | |
(float, np.ndarray): sample rate and raw audio or None | |
""" | |
_, beats = beat_track(y=audio, sr=sample_rate, units='samples') | |
for beats_in_bar in [16, 12, 8, 4]: | |
if len(beats) > beats_in_bar: | |
return np.tile(audio[beats[0]:beats[beats_in_bar]], loops) | |
return None | |
class AudioDiffusionPipeline(DiffusionPipeline): | |
def __init__(self, unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, DDPMScheduler]): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
mel: Mel, | |
batch_size: int = 1, | |
audio_file: str = None, | |
raw_audio: np.ndarray = None, | |
slice: int = 0, | |
start_step: int = 0, | |
steps: int = None, | |
generator: torch.Generator = None, | |
mask_start_secs: float = 0, | |
mask_end_secs: float = 0, | |
step_generator: torch.Generator = None, | |
eta: float = 0, | |
noise: torch.Tensor = None | |
) -> Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]]: | |
"""Generate random mel spectrogram from audio input and convert to audio. | |
Args: | |
mel (Mel): instance of Mel class to perform image <-> audio | |
batch_size (int): number of samples to generate | |
audio_file (str): must be a file on disk due to Librosa limitation or | |
raw_audio (np.ndarray): audio as numpy array | |
slice (int): slice number of audio to convert | |
start_step (int): step to start from | |
steps (int): number of de-noising steps (defaults to 50 for DDIM, 1000 for DDPM) | |
generator (torch.Generator): random number generator or None | |
mask_start_secs (float): number of seconds of audio to mask (not generate) at start | |
mask_end_secs (float): number of seconds of audio to mask (not generate) at end | |
step_generator (torch.Generator): random number generator used to de-noise or None | |
eta (float): parameter between 0 and 1 used with DDIM scheduler | |
noise (torch.Tensor): noise tensor of shape (batch_size, 1, height, width) or None | |
Returns: | |
List[PIL Image]: mel spectrograms | |
(float, List[np.ndarray]): sample rate and raw audios | |
""" | |
steps = steps or 50 if isinstance(self.scheduler, | |
DDIMScheduler) else 1000 | |
self.scheduler.set_timesteps(steps) | |
step_generator = step_generator or generator | |
# For backwards compatibility | |
if type(self.unet.sample_size) == int: | |
self.unet.sample_size = (self.unet.sample_size, | |
self.unet.sample_size) | |
if noise is None: | |
noise = torch.randn( | |
(batch_size, self.unet.in_channels, self.unet.sample_size[0], | |
self.unet.sample_size[1]), | |
generator=generator) | |
images = noise | |
mask = None | |
if audio_file is not None or raw_audio is not None: | |
mel.load_audio(audio_file, raw_audio) | |
input_image = mel.audio_slice_to_image(slice) | |
input_image = np.frombuffer(input_image.tobytes(), | |
dtype="uint8").reshape( | |
(input_image.height, | |
input_image.width)) | |
input_image = ((input_image / 255) * 2 - 1) | |
input_images = np.tile(input_image, (batch_size, 1, 1, 1)) | |
if hasattr(self, 'vqvae'): | |
input_images = self.vqvae.encode( | |
input_images).latent_dist.sample(generator=generator) | |
input_images = 0.18215 * input_images | |
if start_step > 0: | |
images[0, 0] = self.scheduler.add_noise( | |
torch.tensor(input_images[:, np.newaxis, np.newaxis, :]), | |
noise, torch.tensor(steps - start_step)) | |
pixels_per_second = (self.unet.sample_size[1] * | |
mel.get_sample_rate() / mel.x_res / | |
mel.hop_length) | |
mask_start = int(mask_start_secs * pixels_per_second) | |
mask_end = int(mask_end_secs * pixels_per_second) | |
mask = self.scheduler.add_noise( | |
torch.tensor(input_images[:, np.newaxis, :]), noise, | |
torch.tensor(self.scheduler.timesteps[start_step:])) | |
images = images.to(self.device) | |
for step, t in enumerate( | |
self.progress_bar(self.scheduler.timesteps[start_step:])): | |
model_output = self.unet(images, t)['sample'] | |
if isinstance(self.scheduler, DDIMScheduler): | |
images = self.scheduler.step( | |
model_output=model_output, | |
timestep=t, | |
sample=images, | |
eta=eta, | |
generator=step_generator)['prev_sample'] | |
else: | |
images = self.scheduler.step( | |
model_output=model_output, | |
timestep=t, | |
sample=images, | |
generator=step_generator)['prev_sample'] | |
if mask is not None: | |
if mask_start > 0: | |
images[:, :, :, :mask_start] = mask[ | |
step, :, :, :, :mask_start] | |
if mask_end > 0: | |
images[:, :, :, -mask_end:] = mask[step, :, :, :, | |
-mask_end:] | |
if hasattr(self, 'vqvae'): | |
# 0.18215 was scaling factor used in training to ensure unit variance | |
images = 1 / 0.18215 * images | |
images = self.vqvae.decode(images)['sample'] | |
images = (images / 2 + 0.5).clamp(0, 1) | |
images = images.cpu().permute(0, 2, 3, 1).numpy() | |
images = (images * 255).round().astype("uint8") | |
images = list( | |
map(lambda _: Image.fromarray(_[:, :, 0]), images) if images. | |
shape[3] == 1 else map( | |
lambda _: Image.fromarray(_, mode='RGB').convert('L'), images)) | |
audios = list(map(lambda _: mel.image_to_audio(_), images)) | |
return images, (mel.get_sample_rate(), audios) | |
def encode(self, images: List[Image.Image], steps: int = 50) -> np.ndarray: | |
"""Reverse step process: recover noisy image from generated image. | |
Args: | |
images (List[PIL Image]): list of images to encode | |
steps (int): number of encoding steps to perform (defaults to 50) | |
Returns: | |
np.ndarray: noise tensor of shape (batch_size, 1, height, width) | |
""" | |
# Only works with DDIM as this method is deterministic | |
assert isinstance(self.scheduler, DDIMScheduler) | |
self.scheduler.set_timesteps(steps) | |
sample = np.array([ | |
np.frombuffer(image.tobytes(), dtype="uint8").reshape( | |
(1, image.height, image.width)) for image in images | |
]) | |
sample = ((sample / 255) * 2 - 1) | |
sample = torch.Tensor(sample).to(self.device) | |
for t in self.progress_bar(torch.flip(self.scheduler.timesteps, | |
(0, ))): | |
prev_timestep = (t - self.scheduler.num_train_timesteps // | |
self.scheduler.num_inference_steps) | |
alpha_prod_t = self.scheduler.alphas_cumprod[t] | |
alpha_prod_t_prev = (self.scheduler.alphas_cumprod[prev_timestep] | |
if prev_timestep >= 0 else | |
self.scheduler.final_alpha_cumprod) | |
beta_prod_t = 1 - alpha_prod_t | |
model_output = self.unet(sample, t)['sample'] | |
pred_sample_direction = (1 - | |
alpha_prod_t_prev)**(0.5) * model_output | |
sample = (sample - | |
pred_sample_direction) * alpha_prod_t_prev**(-0.5) | |
sample = sample * alpha_prod_t**(0.5) + beta_prod_t**( | |
0.5) * model_output | |
return sample | |
def slerp(x0: torch.Tensor, x1: torch.Tensor, | |
alpha: float) -> torch.Tensor: | |
"""Spherical Linear intERPolation | |
Args: | |
x0 (torch.Tensor): first tensor to interpolate between | |
x1 (torch.Tensor): seconds tensor to interpolate between | |
alpha (float): interpolation between 0 and 1 | |
Returns: | |
torch.Tensor: interpolated tensor | |
""" | |
theta = acos( | |
torch.dot(torch.flatten(x0), torch.flatten(x1)) / torch.norm(x0) / | |
torch.norm(x1)) | |
return sin((1 - alpha) * theta) * x0 / sin(theta) + sin( | |
alpha * theta) * x1 / sin(theta) | |
class LatentAudioDiffusionPipeline(AudioDiffusionPipeline): | |
def __init__(self, unet: UNet2DConditionModel, | |
scheduler: Union[DDIMScheduler, | |
DDPMScheduler], vqvae: AutoencoderKL): | |
super().__init__(unet=unet, scheduler=scheduler) | |
self.register_modules(vqvae=vqvae) | |
def __call__(self, *args, **kwargs): | |
return super().__call__(*args, **kwargs) | |