Spaces:
Runtime error
Runtime error
print seed
Browse files
notebooks/test_model.ipynb
CHANGED
@@ -74,7 +74,7 @@
|
|
74 |
"\n",
|
75 |
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
|
76 |
"\n",
|
77 |
-
"model_id = \"teticio/audio-diffusion-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\"]"
|
78 |
]
|
79 |
},
|
80 |
{
|
@@ -252,7 +252,7 @@
|
|
252 |
},
|
253 |
"outputs": [],
|
254 |
"source": [
|
255 |
-
"start_step =
|
256 |
"overlap_secs = 2 #@param {type:\"integer\"}\n",
|
257 |
"mel.load_audio(audio_file)\n",
|
258 |
"overlap_samples = overlap_secs * mel.get_sample_rate()\n",
|
@@ -260,6 +260,7 @@
|
|
260 |
"stride = slice_size - overlap_samples\n",
|
261 |
"generator = torch.Generator()\n",
|
262 |
"seed = generator.seed()\n",
|
|
|
263 |
"track = np.array([])\n",
|
264 |
"not_first = 0\n",
|
265 |
"for sample in range(len(mel.audio) // stride):\n",
|
@@ -300,7 +301,6 @@
|
|
300 |
"_, (sample_rate,\n",
|
301 |
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
|
302 |
" raw_audio=mel.get_audio_slice(slice),\n",
|
303 |
-
" generator=generator,\n",
|
304 |
" mask_start_secs=1,\n",
|
305 |
" mask_end_secs=1)\n",
|
306 |
"display(Audio(audio, rate=sample_rate))\n",
|
|
|
74 |
"\n",
|
75 |
"#@markdown teticio/audio-diffusion-instrumental-hiphop-256 - trained on instrumental hiphop\n",
|
76 |
"\n",
|
77 |
+
"model_id = \"teticio/audio-diffusion-instrumental-hiphop-256\" #@param [\"teticio/audio-diffusion-256\", \"teticio/audio-diffusion-breaks-256\", \"audio-diffusion-instrumenal-hiphop-256\"]"
|
78 |
]
|
79 |
},
|
80 |
{
|
|
|
252 |
},
|
253 |
"outputs": [],
|
254 |
"source": [
|
255 |
+
"start_step = 100 #@param {type:\"slider\", min:0, max:1000, step:10}\n",
|
256 |
"overlap_secs = 2 #@param {type:\"integer\"}\n",
|
257 |
"mel.load_audio(audio_file)\n",
|
258 |
"overlap_samples = overlap_secs * mel.get_sample_rate()\n",
|
|
|
260 |
"stride = slice_size - overlap_samples\n",
|
261 |
"generator = torch.Generator()\n",
|
262 |
"seed = generator.seed()\n",
|
263 |
+
"print(f'Seed = {seed}')\n",
|
264 |
"track = np.array([])\n",
|
265 |
"not_first = 0\n",
|
266 |
"for sample in range(len(mel.audio) // stride):\n",
|
|
|
301 |
"_, (sample_rate,\n",
|
302 |
" audio2) = audio_diffusion.generate_spectrogram_and_audio_from_audio(\n",
|
303 |
" raw_audio=mel.get_audio_slice(slice),\n",
|
|
|
304 |
" mask_start_secs=1,\n",
|
305 |
" mask_end_secs=1)\n",
|
306 |
"display(Audio(audio, rate=sample_rate))\n",
|