Spaces:
Runtime error
Runtime error
get working for monochrome
Browse files- audiodiffusion/utils.py +0 -21
- config/ldm_autoencoder_kl.yaml +7 -6
- scripts/train_vae.py +5 -7
audiodiffusion/utils.py
CHANGED
@@ -31,27 +31,6 @@ def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
|
31 |
return mapping
|
32 |
|
33 |
|
34 |
-
def renew_attention_paths(old_list, n_shave_prefix_segments=0):
|
35 |
-
"""
|
36 |
-
Updates paths inside attentions to the new naming scheme (local renaming)
|
37 |
-
"""
|
38 |
-
mapping = []
|
39 |
-
for old_item in old_list:
|
40 |
-
new_item = old_item
|
41 |
-
|
42 |
-
# new_item = new_item.replace('norm.weight', 'group_norm.weight')
|
43 |
-
# new_item = new_item.replace('norm.bias', 'group_norm.bias')
|
44 |
-
|
45 |
-
# new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
|
46 |
-
# new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')
|
47 |
-
|
48 |
-
# new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
|
49 |
-
|
50 |
-
mapping.append({"old": old_item, "new": new_item})
|
51 |
-
|
52 |
-
return mapping
|
53 |
-
|
54 |
-
|
55 |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
56 |
"""
|
57 |
Updates paths inside attentions to the new naming scheme (local renaming)
|
|
|
31 |
return mapping
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
35 |
"""
|
36 |
Updates paths inside attentions to the new naming scheme (local renaming)
|
config/ldm_autoencoder_kl.yaml
CHANGED
@@ -4,22 +4,23 @@ model:
|
|
4 |
target: ldm.models.autoencoder.AutoencoderKL
|
5 |
params:
|
6 |
monitor: "val/rec_loss"
|
7 |
-
embed_dim:
|
8 |
lossconfig:
|
9 |
target: ldm.modules.losses.LPIPSWithDiscriminator
|
10 |
params:
|
11 |
disc_start: 50001
|
12 |
kl_weight: 0.000001
|
13 |
disc_weight: 0.5
|
|
|
14 |
|
15 |
ddconfig:
|
16 |
double_z: True
|
17 |
-
z_channels:
|
18 |
resolution: 256
|
19 |
-
in_channels:
|
20 |
-
out_ch:
|
21 |
ch: 128
|
22 |
-
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1
|
23 |
num_res_blocks: 2
|
24 |
attn_resolutions: [ ]
|
25 |
dropout: 0.0
|
@@ -27,5 +28,5 @@ model:
|
|
27 |
lightning:
|
28 |
trainer:
|
29 |
benchmark: True
|
30 |
-
accelerator: gpu
|
31 |
devices: 1
|
|
|
4 |
target: ldm.models.autoencoder.AutoencoderKL
|
5 |
params:
|
6 |
monitor: "val/rec_loss"
|
7 |
+
embed_dim: 1 # = in_channels
|
8 |
lossconfig:
|
9 |
target: ldm.modules.losses.LPIPSWithDiscriminator
|
10 |
params:
|
11 |
disc_start: 50001
|
12 |
kl_weight: 0.000001
|
13 |
disc_weight: 0.5
|
14 |
+
disc_in_channels: 1 # = out_ch
|
15 |
|
16 |
ddconfig:
|
17 |
double_z: True
|
18 |
+
z_channels: 1 # must = embed_dim due to HF limitation
|
19 |
resolution: 256
|
20 |
+
in_channels: 1
|
21 |
+
out_ch: 1
|
22 |
ch: 128
|
23 |
+
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
|
24 |
num_res_blocks: 2
|
25 |
attn_resolutions: [ ]
|
26 |
dropout: 0.0
|
|
|
28 |
lightning:
|
29 |
trainer:
|
30 |
benchmark: True
|
31 |
+
#accelerator: gpu
|
32 |
devices: 1
|
scripts/train_vae.py
CHANGED
@@ -1,10 +1,6 @@
|
|
1 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
|
2 |
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
3 |
|
4 |
-
# TODO
|
5 |
-
# grayscale
|
6 |
-
# docstrings
|
7 |
-
|
8 |
import os
|
9 |
import argparse
|
10 |
|
@@ -117,9 +113,9 @@ class HFModelCheckpoint(ModelCheckpoint):
|
|
117 |
self.hf_checkpoint = hf_checkpoint
|
118 |
|
119 |
def on_train_epoch_end(self, trainer, pl_module):
|
|
|
|
|
120 |
super().on_train_epoch_end(trainer, pl_module)
|
121 |
-
ldm_checkpoint = self.format_checkpoint_name(
|
122 |
-
{'epoch': trainer.current_epoch})
|
123 |
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config,
|
124 |
self.hf_checkpoint)
|
125 |
|
@@ -148,6 +144,7 @@ if __name__ == "__main__":
|
|
148 |
default=1)
|
149 |
parser.add_argument("--resolution", type=int, default=256)
|
150 |
parser.add_argument("--hop_length", type=int, default=512)
|
|
|
151 |
args = parser.parse_args()
|
152 |
|
153 |
config = OmegaConf.load(args.ldm_config_file)
|
@@ -165,7 +162,8 @@ if __name__ == "__main__":
|
|
165 |
trainer_opt,
|
166 |
resume_from_checkpoint=args.resume_from_checkpoint,
|
167 |
callbacks=[
|
168 |
-
ImageLogger(
|
|
|
169 |
resolution=args.resolution,
|
170 |
hop_length=args.hop_length),
|
171 |
HFModelCheckpoint(ldm_config=config,
|
|
|
1 |
# pip install -e git+https://github.com/CompVis/stable-diffusion.git@master
|
2 |
# pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
3 |
|
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
import argparse
|
6 |
|
|
|
113 |
self.hf_checkpoint = hf_checkpoint
|
114 |
|
115 |
def on_train_epoch_end(self, trainer, pl_module):
|
116 |
+
ldm_checkpoint = self._get_metric_interpolated_filepath_name(
|
117 |
+
{'epoch': trainer.current_epoch}, trainer)
|
118 |
super().on_train_epoch_end(trainer, pl_module)
|
|
|
|
|
119 |
convert_ldm_to_hf_vae(ldm_checkpoint, self.ldm_config,
|
120 |
self.hf_checkpoint)
|
121 |
|
|
|
144 |
default=1)
|
145 |
parser.add_argument("--resolution", type=int, default=256)
|
146 |
parser.add_argument("--hop_length", type=int, default=512)
|
147 |
+
parser.add_argument("--save_images_batches", type=int, default=1000)
|
148 |
args = parser.parse_args()
|
149 |
|
150 |
config = OmegaConf.load(args.ldm_config_file)
|
|
|
162 |
trainer_opt,
|
163 |
resume_from_checkpoint=args.resume_from_checkpoint,
|
164 |
callbacks=[
|
165 |
+
ImageLogger(every=args.save_images_batches,
|
166 |
+
channels=config.model.params.ddconfig.out_ch,
|
167 |
resolution=args.resolution,
|
168 |
hop_length=args.hop_length),
|
169 |
HFModelCheckpoint(ldm_config=config,
|