Spaces:
Running
Running
File size: 7,197 Bytes
f40e7fa 7bb535d 95aad66 6425ca8 95aad66 7bb535d 9529307 95aad66 6425ca8 95aad66 6425ca8 95aad66 3d84bdd 95aad66 6425ca8 95aad66 ec1ff5d 6425ca8 3d84bdd ec1ff5d 3d84bdd 6425ca8 3d84bdd ec1ff5d 6425ca8 95aad66 6425ca8 95aad66 6425ca8 95aad66 6425ca8 95aad66 6425ca8 95aad66 9529307 95aad66 6425ca8 95aad66 6425ca8 95aad66 6425ca8 95aad66 6425ca8 f049f5e 6425ca8 95aad66 6425ca8 95aad66 d1cf2b0 95aad66 f40e7fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import argparse
import nltk
import torch
import numpy as np
import gradio as gr
from nltk import sent_tokenize
from transformers import (
RobertaTokenizer,
RobertaForMaskedLM,
LogitsProcessorList,
TopKLogitsWarper,
TemperatureLogitsWarper,
)
from transformers.generation_logits_process import TypicalLogitsWarper
nltk.download('punkt')
device = "cuda" if torch.cuda.is_available() else "cpu"
pretrained = "roberta-large" if device == "cuda" else "roberta-base"
tokenizer = RobertaTokenizer.from_pretrained(pretrained)
model = RobertaForMaskedLM.from_pretrained(pretrained)
model = model.to(device)
max_len = 20
top_k = 100
temperature = 1
typical_p = 0
burnin = 250
max_iter = 500
# adapted from https://github.com/nyu-dl/bert-gen
def generate_step(out: object,
gen_idx: int,
top_k: int = top_k,
temperature: float = temperature,
typical_p: float = typical_p,
sample: bool = False) -> list:
""" Generate a word from from out[gen_idx]
args:
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
- gen_idx (int): location for which to generate
- top_k (int): if >0, only sample from the top k most probable words
- temperature (float): sampling temperature
- typical_p (float): if >0 use typical sampling
- sample (bool): if True, sample from full distribution.
returns:
- list: batch_size tokens
"""
logits = out.logits[:, gen_idx]
warpers = LogitsProcessorList()
if temperature:
warpers.append(TemperatureLogitsWarper(temperature))
if top_k > 0:
warpers.append(TopKLogitsWarper(top_k))
if typical_p > 0:
if typical_p >= 1:
typical_p = 0.999
warpers.append(TypicalLogitsWarper(typical_p))
logits = warpers(None, logits)
if sample:
probs = torch.nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(logits, dim=-1)
return next_tokens.tolist()
# adapted from https://github.com/nyu-dl/bert-gen
def parallel_sequential_generation(seed_text: str,
seed_end_text: str,
max_len: int = max_len,
top_k: int = top_k,
temperature: float = temperature,
typical_p: float = typical_p,
max_iter: int = max_iter,
burnin: int = burnin) -> str:
""" Generate text consistent with preceding and following text
Args:
- seed_text (str): preceding text
- seed_end_text (str): following text
- top_k (int): if >0, only sample from the top k most probable words
- temperature (float): sampling temperature
- typical_p (float): if >0 use typical sampling
- max_iter (int): number of iterations in MCMC
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
Returns:
- string: generated text to insert between seed_text and seed_end_text
"""
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
return_tensors='pt')
masked_tokens = np.where(
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
seed_len = masked_tokens[0]
inp = inp.to(device)
for ii in range(max_iter):
kk = np.random.randint(0, max_len)
idxs = generate_step(model(**inp),
gen_idx=seed_len + kk,
top_k=top_k if (ii >= burnin) else 0,
temperature=temperature,
typical_p=typical_p,
sample=(ii < burnin))
inp['input_ids'][0][seed_len + kk] = idxs[0]
tokens = inp['input_ids'].cpu().numpy()[0][masked_tokens]
tokens = tokens[(np.where((tokens != tokenizer.eos_token_id)
& (tokens != tokenizer.bos_token_id)))]
return tokenizer.decode(tokens)
def inbertolate(doc: str,
max_len: int = max_len,
top_k: int = top_k,
temperature: float = temperature,
typical_p: float = typical_p,
max_iter: int = max_iter,
burnin: int = burnin) -> str:
""" Pad out document generating every other sentence
Args:
- doc (str): document text
- max_len (int): number of tokens to insert between sentences
- top_k (int): if >0, only sample from the top k most probable words
- temperature (float): sampling temperature
- typical_p (float): if >0 use typical sampling
- max_iter (int): number of iterations in MCMC
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
Returns:
- string: generated text to insert between seed_text and seed_end_text
"""
new_doc = ''
paras = doc.split('\n')
for para in paras:
para = sent_tokenize(para)
if para == '':
new_doc += '\n'
continue
para += ['']
for sentence in range(len(para) - 1):
new_doc += para[sentence] + ' '
new_doc += parallel_sequential_generation(
para[sentence],
para[sentence + 1],
max_len=max_len,
top_k=top_k,
temperature=float(temperature),
typical_p=typical_p,
burnin=burnin,
max_iter=max_iter) + ' '
new_doc += '\n'
return new_doc
demo = gr.Interface(
fn=inbertolate,
title="inBERTolate",
description=f"Hit your word count by using BERT ({pretrained}) to pad out your essays!",
inputs=[
gr.Textbox(label="Text", lines=10),
gr.Slider(label="Maximum length to insert between sentences",
minimum=1,
maximum=40,
step=1,
value=max_len),
gr.Slider(label="Top k", minimum=0, maximum=200, value=top_k),
gr.Slider(label="Temperature",
minimum=0,
maximum=2,
value=temperature),
gr.Slider(label="Typical p",
minimum=0,
maximum=1,
value=typical_p),
gr.Slider(label="Maximum iterations",
minimum=0,
maximum=1000,
value=max_iter),
gr.Slider(label="Burn-in",
minimum=0,
maximum=500,
value=burnin),
],
outputs=gr.Textbox(label="Expanded text", lines=30))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--port', type=int)
parser.add_argument('--server', type=int)
args = parser.parse_args()
demo.launch(server_name=args.server or '0.0.0.0', server_port=args.port)
|