from threading import Lock import argparse import numpy as np from matplotlib import pyplot as plt import gradio as gr import torch import pandas as pd from biasprobe import BinaryProbe, PairwiseExtractionRunner, SimplePairPromptBuilder, ProbeConfig def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--seed', '-s', type=int, default=0, help="the random seed") parser.add_argument('--port', '-p', type=int, default=8080, help="the port to launch the demo") parser.add_argument('--no-cuda', action='store_true', help="Use CPUs instead of GPUs") args = parser.parse_args() return args def main(): args = get_args() plt.switch_backend('agg') dmap = 'auto' mdict = {0: '24GIB'} config = ProbeConfig.create_for_model('mistralai/Mistral-7B-Instruct-v0.1') probe = BinaryProbe(config).cuda() probe.load_state_dict(torch.load('probe.pt')) runner = PairwiseExtractionRunner.from_pretrained('mistralai/Mistral-7B-Instruct-v0.1', optimize=False, torch_dtype=torch.float16, max_memory=mdict, device_map=dmap, low_cpu_mem_usage=True) device = "cpu" if args.no_cuda else "cuda" lock = Lock() @torch.no_grad() def run_extraction(prompt): builder = SimplePairPromptBuilder(criterion='more positive') lst = [x.strip() for x in prompt.lower()[:300].split(',')][:100] exp = runner.run_extraction(lst, lst, layers=[15], num_repeat=100, builder=builder, parallel=False, run_inference=True, debug=True, max_new_tokens=2) test_ds = exp.make_dataset(15) import torch raw_scores = [] preds_list = [] hs = [] for idx, (tensor, labels) in enumerate(test_ds): with torch.no_grad(): labels = labels - 1 # 1-indexed if tensor.shape[0] != 2: continue h = tensor[1] - tensor[0] hs.append(h) try: x = probe(tensor.unsqueeze(0).cuda().float()).squeeze() except IndexError: continue pred = [0, 1] if x.item() > 0 else [1, 0] pred = np.array(pred) if test_ds.original_examples is not None: items = [x.content for x in test_ds.original_examples[idx].hits] preds_list.append(np.array(items, dtype=object)[labels][pred].tolist()) raw_scores.append(x.item()) df = pd.DataFrame({'Win Rate': np.array(raw_scores) > 0, 'Word': [x[0] for x in preds_list]}) win_df = df.groupby('Word').mean('Win Rate') win_df = win_df.reset_index().sort_values('Win Rate') win_df['Win Rate'] = [str(x) + '%' for x in (win_df['Win Rate'] * 100).round(2).tolist()] return win_df with gr.Blocks(css='scrollbar.css') as demo: md = '''# BiasProbe: Revealing Preference Biases in Language Model Representations What do llamas really "think"? Type some words below to see how Mistral-7B-Instruct associates them with positive and negative emotions. Higher win rates indicate that the word is more likely to be associated with positive emotions than other words in the list. Check out our paper, [What Do Llamas Really Think? Revealing Preference Biases in Language Model Representations](http://arxiv.org/abs/2210.04885). See our [codebase](https://github.com/castorini/biasprobe) on GitHub. ''' gr.Markdown(md) with gr.Row(): with gr.Column(): text = gr.Textbox(label='Words', value='Republican, democrat, libertarian, authoritarian') submit_btn = gr.Button('Submit', elem_id='submit-btn') output = gr.DataFrame(pd.DataFrame({'Word': ['authoritarian', 'republican', 'democrat', 'libertarian'], 'Win Rate': ['44.44%', '81.82%', '100%', '100%']})) submit_btn.click( fn=run_extraction, inputs=[text], outputs=[output]) while True: try: demo.launch(server_name='0.0.0.0') except OSError: gr.close_all() except KeyboardInterrupt: gr.close_all() break if __name__ == '__main__': main()