import logging import gradio as gr import numpy as np import cv2 import os import base64 from try_on_diffusion_client import TryOnDiffusionClient LOG_LEVEL = logging.INFO LOG_FORMAT = "%(asctime)s %(thread)-8s %(name)-16s %(levelname)-8s %(message)s" LOG_DATE_FORMAT = "%Y-%m-%d %H:%M:%S" EXAMPLE_PATH = os.path.join(os.path.dirname(__file__), "examples") API_URL = os.getenv("TRY_ON_DIFFUSION_DEMO_API_URL", "http://localhost:8000") API_KEY = os.getenv("TRY_ON_DIFFUSION_DEMO_API_KEY", "") SHOW_RAPIDAPI_LINK = os.getenv("TRY_ON_DIFFUSION_DEMO_SHOW_RAPIDAPI_LINK", "1") == "1" CONCURRENCY_LIMIT = int(os.getenv("TRY_ON_DIFFUSION_DEMO_CONCURRENCY_LIMIT", "2")) logging.basicConfig(level=LOG_LEVEL, format=LOG_FORMAT, datefmt=LOG_DATE_FORMAT) client = TryOnDiffusionClient(base_url=API_URL, api_key=API_KEY) def get_image_base64(file_name: str) -> str: _, ext = os.path.splitext(file_name.lower()) content_type = "image/jpeg" if ext == ".png": content_type = "image/png" elif ext == ".webp": content_type = "image/webp" elif ext == ".gif": content_type = "image/gif" with open(file_name, "rb") as f: return f"data:{content_type};base64," + base64.b64encode(f.read()).decode("utf-8") def get_examples(example_dir: str) -> list[str]: file_list = [f for f in os.listdir(os.path.join(EXAMPLE_PATH, example_dir)) if f.endswith(".jpg")] file_list.sort() return [os.path.join(EXAMPLE_PATH, example_dir, f) for f in file_list] def try_on( clothing_image: np.ndarray = None, clothing_prompt: str = None, avatar_image: np.ndarray = None, avatar_prompt: str = None, avatar_sex: str = None, background_image: np.ndarray = None, background_prompt: str = None, seed: int = -1, ) -> tuple: result = client.try_on_file( clothing_image=cv2.cvtColor(clothing_image, cv2.COLOR_RGB2BGR) if clothing_image is not None else None, clothing_prompt=clothing_prompt, avatar_image=cv2.cvtColor(avatar_image, cv2.COLOR_RGB2BGR) if avatar_image is not None else None, avatar_prompt=avatar_prompt, avatar_sex=avatar_sex if avatar_sex in ["male", "female"] else None, background_image=cv2.cvtColor(background_image, cv2.COLOR_RGB2BGR) if background_image is not None else None, background_prompt=background_prompt, seed=seed, ) if result.status_code == 200: return cv2.cvtColor(result.image, cv2.COLOR_BGR2RGB), f"

Success

Seed: {result.seed}

" else: error_message = f"

Error {result.status_code}

" if result.error_details is not None: error_message += f"

{result.error_details}

" return None, error_message with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(3600, 3600)) as app: gr.HTML( f"""
Texel.Moda

Virtual Try-On Diffusion


Virtual Try-On Diffusion [VTON-D] by Texel.Moda is a custom diffusion-based pipeline for fast and flexible multi-modal virtual try-on. Clothing, avatar and background can be specified by reference images or text prompts allowing for clothing transfer, avatar replacement, fashion image generation and other virtual try-on related tasks. """ ) if SHOW_RAPIDAPI_LINK: gr.Button( value="Check out the API @ RapidAPI.com", link="https://rapidapi.com/texelmoda-texelmoda-apis/api/try-on-diffusion", icon="https://files.readme.io/9336831-small-rapid-logo-favicon.png", ) gr.HTML( """

API Documentation
""" ) gr.HTML("

") with gr.Row(): with gr.Column(): gr.HTML( """

Clothing

Clothing may be specified with a reference image or a text prompt. For more exotic use cases image and prompt can be also used together. If both image and prompt are empty the model will generate random clothing.

""" ) with gr.Tab("Image"): clothing_image = gr.Image(label="Clothing Image", sources=["upload"], type="numpy") clothing_image_examples = gr.Examples( inputs=clothing_image, examples_per_page=12, examples=get_examples("clothing") ) with gr.Tab("Prompt"): clothing_prompt = gr.TextArea( label="Clothing Prompt", info='Compel weighting syntax is supported.', ) clothing_prompt_examples = gr.Examples( inputs=clothing_prompt, examples_per_page=8, examples=[ "a sheer blue sleeveless mini dress", "a beige woolen sweater and white pleated skirt", "a black leather jacket and dark blue slim-fit jeans", "a floral pattern blouse and leggings", "a paisley pattern purple shirt and beige chinos", "a striped white and blue polo shirt and blue jeans", "a colorful t-shirt and black shorts", "a checked pattern shirt and dark blue cargo pants", ], ) with gr.Column(): gr.HTML( """

Avatar

Avatar may be specified with a subject photo or a text prompt. Latter can be used, for example, to replace person while preserving clothing. For more exotic use cases image and prompt can be also used together. If both image and prompt are empty the model will generate random avatars.

""" ) with gr.Tab("Image"): avatar_image = gr.Image(label="Avatar Image", sources=["upload"], type="numpy") avatar_image_examples = gr.Examples( inputs=avatar_image, examples_per_page=12, examples=get_examples("avatar"), ) with gr.Tab("Prompt"): avatar_prompt = gr.TextArea( label="Avatar Prompt", info='Compel weighting syntax is supported.', ) avatar_prompt_examples = gr.Examples( inputs=avatar_prompt, examples_per_page=8, examples=[ "a beautiful blond girl with long hair", "a cute redhead girl with freckles", "a plus size female model wearing sunglasses", "a woman with dark hair and blue eyes", "a fit man with dark beard and blue eyes", "a young blond man posing for a photo", "a gentleman with beard and mustache", "a plus size man walking", ], ) avatar_sex = gr.Dropdown( label="Avatar Sex", choices=[("Auto", ""), ("Male", "male"), ("Female", "female")], value="", info="Avatar sex selector can be used to enforce a specific sex of the avatar.", ) with gr.Column(): gr.HTML( """

Background

Replacing background is optional. Background may be specified with a reference image or a text prompt. If omitted original avatar background will be preserved.


""" ) with gr.Tab("Image"): background_image = gr.Image(label="Background Image", sources=["upload"], type="numpy") background_image_examples = gr.Examples( inputs=background_image, examples_per_page=12, examples=get_examples("background") ) with gr.Tab("Prompt"): background_prompt = gr.TextArea( label="Background Prompt", info='Compel weighting syntax is supported.', ) background_prompt_examples = gr.Examples( inputs=background_prompt, examples_per_page=8, examples=[ "in an autumn park", "in front of a brick wall", "near an old tree", "on a busy city street", "in front of a staircase", "on an ocean beach with palm trees", "in a shopping mall", "in a modern office", ], ) with gr.Column(): gr.HTML( """

Generation

""" ) seed = gr.Number( label="Seed", value=-1, minimum=-1, info="Seed used for generation, specify -1 for random seed for each generation.", ) generate_button = gr.Button(value="Generate", variant="primary") result_image = gr.Image(label="Result", show_share_button=False, format="jpeg") result_details = gr.HTML(label="Details") generate_button.click( fn=try_on, inputs=[ clothing_image, clothing_prompt, avatar_image, avatar_prompt, avatar_sex, background_image, background_prompt, seed, ], outputs=[result_image, result_details], api_name=False, concurrency_limit=CONCURRENCY_LIMIT, ) app.title = "Virtual Try-On Diffusion by Texel.Moda" if __name__ == "__main__": app.queue(api_open=False).launch(show_api=False)