Spaces:
Sleeping
Sleeping
File size: 1,044 Bytes
990dc13 e793ba7 043a02e e793ba7 990dc13 043a02e e793ba7 990dc13 043a02e 50ca09f 990dc13 043a02e e793ba7 990dc13 043a02e e793ba7 043a02e 990dc13 b1ce276 043a02e 18f2d2a 990dc13 043a02e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import numpy as np
import os
import gradio as gr
import xgboost as xgb
import pickle
from sklearn.feature_extraction.text import TfidfVectorizer
os.environ["WANDB_DISABLED"] = "true"
label2id = {
0: "negative",
1: "neutral",
2: "positive"
}
# names of the files saved in step 2: Training
model_file_name = "xgb_reg_dg.pkl"
vectorizer_file_name = 'vectorizer_dg.pk'
# load
xgb_model_loaded = pickle.load(open(model_file_name, "rb"))
vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb"))
def predict_sentiment(predict_texts):
predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts]))
print(predictions_loaded)
return label2id[predictions_loaded[0]]
interface = gr.Interface(
fn=predict_sentiment,
inputs='text',
outputs=['text'],
title='Croatian Book reviews Sentiment Analysis',
examples= ["Volim kavu","Ne volim kavu"],
description='Get the positive/neutral/negative sentiment for the given input.'
)
interface.launch(inline = False) |