import numpy as np import os import gradio as gr import xgboost as xgb import pickle from sklearn.feature_extraction.text import TfidfVectorizer os.environ["WANDB_DISABLED"] = "true" label2id = { 0: "negative", 1: "neutral", 2: "positive" } # names of the files saved in step 2: Training model_file_name = "xgb_reg_dg.pkl" vectorizer_file_name = 'vectorizer_dg.pk' # load xgb_model_loaded = pickle.load(open(model_file_name, "rb")) vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb")) def predict_sentiment(predict_texts): predictions_loaded = xgb_model_loaded.predict(vectorizer_loaded.transform([predict_texts])) print(predictions_loaded) return label2id[predictions_loaded[0]] interface = gr.Interface( fn=predict_sentiment, inputs='text', outputs=['text'], title='Croatian Book reviews Sentiment Analysis', examples= ["Volim kavu","Ne volim kavu"], description='Get the positive/neutral/negative sentiment for the given input.' ) interface.launch(inline = False)