File size: 903 Bytes
b357c71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from transformers import WhisperTokenizer

tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="marathi", task="transcribe")

from transformers import pipeline
import gradio as gr
import torch 

pipe = pipeline(model="thak123/whisper-small-gom", 
                task="automatic-speech-recognition", tokenizer= tokenizer)  # change to "your-username/the-name-you-picked"

pipe.model.config.forced_decoder_ids = (
        pipe.tokenizer.get_decoder_prompt_ids(
            language="marathi", task="transcribe"
        )
    )

def transcribe(audio):
    text = pipe(audio)["text"]
    return text

iface = gr.Interface(
    fn=transcribe, 
    inputs=gr.Audio(source="microphone", type="filepath"), 
    outputs="text",
    title="Whisper Small Konkani",
    description="Realtime demo for Konkani speech recognition using a fine-tuned Whisper small model.",
)


iface.launch()