Spaces:
Running
Running
from transformers import WhisperTokenizer | |
import os | |
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small") #, language="marathi", task="transcribe" | |
from transformers import pipeline | |
import gradio as gr | |
import torch | |
pipe = pipeline(model="thak123/gom-stt-v3", #"thak123/whisper-small-LDC-V1", #"thak123/whisper-small-gom", | |
task="automatic-speech-recognition", tokenizer= tokenizer) # change to "your-username/the-name-you-picked" | |
# pipe.model.config.forced_decoder_ids = ( | |
# pipe.tokenizer.get_decoder_prompt_ids( | |
# language="marathi", task="transcribe" | |
# ) | |
# ) | |
def transcribe_speech(filepath): | |
output = pipe( | |
filepath, | |
max_new_tokens=256, | |
generate_kwargs={ | |
"task": "transcribe", | |
"language": "konkani", | |
}, # update with the language you've fine-tuned on | |
chunk_length_s=30, | |
batch_size=8, | |
# padding=True | |
) | |
return output["text"] | |
demo = gr.Blocks() | |
mic_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(sources="microphone", type="filepath"), | |
outputs=gr.components.Textbox(), | |
) | |
file_transcribe = gr.Interface( | |
fn=transcribe_speech, | |
inputs=gr.Audio(sources="upload", type="filepath"), | |
outputs=gr.components.Textbox(), | |
) | |
with demo: | |
gr.TabbedInterface( | |
[mic_transcribe, file_transcribe], | |
["Transcribe Microphone", "Transcribe Audio File"], | |
) | |
demo.launch(debug=True) | |
# # def transcribe(audio): | |
# # # text = pipe(audio)["text"] | |
# # # pipe(audio) | |
# # text = pipe(audio) | |
# # print("op",text) | |
# # return text#pipe(audio) #text | |
# # iface = gr.Interface( | |
# # fn=transcribe, | |
# # inputs=[gr.Audio(sources=["microphone", "upload"])], | |
# # outputs="text", | |
# # examples=[ | |
# # [os.path.join(os.path.dirname("."),"audio/chalyaami.mp3")], | |
# # [os.path.join(os.path.dirname("."),"audio/ekdonteen.flac")], | |
# # [os.path.join(os.path.dirname("."),"audio/heyatachadjaale.mp3")], | |
# # ], | |
# # title="Whisper Konkani", | |
# # description="Realtime demo for Konkani speech recognition using a fine-tuned Whisper small model.", | |
# # ) | |
# # iface.launch() | |
# from transformers import WhisperTokenizer, pipeline | |
# import gradio as gr | |
# import os | |
# tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", language="marathi", task="transcribe") | |
# pipe = pipeline(model="thak123/gom-stt-v3", task="automatic-speech-recognition", tokenizer=tokenizer) | |
# def transcribe(audio): | |
# result = pipe(audio) | |
# text = result[0]['text'] | |
# print("op", text) | |
# return text | |
# iface = gr.Interface( | |
# fn=transcribe, | |
# inputs=[gr.Audio(sources=["microphone", "upload"])], | |
# outputs="text", | |
# examples=[ | |
# [os.path.join(os.path.dirname("."), "audio/chalyaami.mp3")], | |
# [os.path.join(os.path.dirname("."), "audio/ekdonteen.flac")], | |
# [os.path.join(os.path.dirname("."), "audio/heyatachadjaale.mp3")], | |
# ], | |
# title="Whisper Konkani", | |
# description="Realtime demo for Konkani speech recognition using a fine-tuned Whisper small model.", | |
# ) | |
# iface.launch() |