tharms commited on
Commit
4131f69
1 Parent(s): 9a93bb1

back to dalle 3

Browse files
Files changed (8) hide show
  1. README.md +7 -7
  2. app.py +187 -100
  3. header.html +0 -24
  4. init_image.png +0 -0
  5. inpainting.py +0 -194
  6. mask_image.png +0 -0
  7. requirements.txt +3 -9
  8. share_btn.py +0 -93
README.md CHANGED
@@ -1,13 +1,13 @@
1
  ---
2
- title: zStudios ai playground
3
  emoji: 🔥
4
- colorFrom: green
5
- colorTo: pink
6
  sdk: gradio
7
- sdk_version: 3.6
8
  app_file: app.py
9
- pinned: false
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
-
 
1
  ---
2
+ title: DALLE 3 XL v2
3
  emoji: 🔥
4
+ colorFrom: yellow
5
+ colorTo: purple
6
  sdk: gradio
7
+ sdk_version: 4.21.0
8
  app_file: app.py
9
+ pinned: true
10
+ license: mit
11
  ---
12
 
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
app.py CHANGED
@@ -1,118 +1,205 @@
1
- import gradio as gr
2
 
3
- from io import BytesIO
4
- import requests
5
- import PIL
6
- from PIL import Image
7
- import numpy as np
8
  import os
 
9
  import uuid
 
 
 
 
 
10
  import torch
11
- from torch import autocast
12
- import cv2
13
- from matplotlib import pyplot as plt
14
- from torchvision import transforms
15
- from diffusers import DiffusionPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
- from share_btn import community_icon_html, loading_icon_html, share_js
 
18
 
19
- pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16).to("cuda")
20
 
21
- def read_content(file_path: str) -> str:
22
- """read the content of target file
23
- """
24
- with open(file_path, 'r', encoding='utf-8') as f:
25
- content = f.read()
 
 
 
 
 
 
26
 
27
- return content
 
 
28
 
29
- def predict(dict, prompt=""):
30
- init_image = dict["image"].convert("RGB").resize((512, 512))
31
- mask = dict["mask"].convert("RGB").resize((512, 512))
32
- output = pipe(prompt = prompt, image=init_image, mask_image=mask,guidance_scale=7.5)
33
- return output.images[0], gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
 
 
 
 
 
 
 
34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
  css = '''
37
- .container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
38
- #image_upload{min-height:400px}
39
- #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
40
- #mask_radio .gr-form{background:transparent; border: none}
41
- #word_mask{margin-top: .75em !important}
42
- #word_mask textarea:disabled{opacity: 0.3}
43
- .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
44
- .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
45
- .dark .footer {border-color: #303030}
46
- .dark .footer>p {background: #0b0f19}
47
- .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
48
- #image_upload .touch-none{display: flex}
49
- @keyframes spin {
50
- from {
51
- transform: rotate(0deg);
52
- }
53
- to {
54
- transform: rotate(360deg);
55
- }
56
- }
57
- #share-btn-container {
58
- display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
59
- }
60
- #share-btn {
61
- all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
62
- }
63
- #share-btn * {
64
- all: unset;
65
- }
66
- #share-btn-container div:nth-child(-n+2){
67
- width: auto !important;
68
- min-height: 0px !important;
69
- }
70
- #share-btn-container .wrap {
71
- display: none !important;
72
  }
73
  '''
 
 
 
 
 
 
 
74
 
75
- image_blocks = gr.Blocks(css=css)
76
- with image_blocks as demo:
77
- gr.HTML(read_content("header.html"))
78
  with gr.Group():
79
- with gr.Box():
80
- with gr.Row():
81
- with gr.Column():
82
- image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload").style(height=400)
83
- with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
84
- prompt = gr.Textbox(placeholder = 'Your prompt (what you want in place of what is erased)', show_label=False, elem_id="input-text")
85
- btn = gr.Button("Inpaint!").style(
86
- margin=False,
87
- rounded=(False, True, True, False),
88
- full_width=False,
89
- )
90
- with gr.Column():
91
- image_out = gr.Image(label="Output", elem_id="output-img").style(height=400)
92
- with gr.Group(elem_id="share-btn-container"):
93
- community_icon = gr.HTML(community_icon_html, visible=False)
94
- loading_icon = gr.HTML(loading_icon_html, visible=False)
95
- share_button = gr.Button("Share to community", elem_id="share-btn", visible=False)
96
-
97
-
98
- btn.click(fn=predict, inputs=[image, prompt], outputs=[image_out, community_icon, loading_icon, share_button])
99
- share_button.click(None, [], [], _js=share_js)
100
-
101
-
102
-
103
- gr.HTML(
104
- """
105
- <div class="footer">
106
- <p>Model by <a href="https://huggingface.co/runwayml" style="text-decoration: underline;" target="_blank">RunwayML</a> - Gradio Demo by 🤗 Hugging Face
107
- </p>
108
- </div>
109
- <div class="acknowledgments">
110
- <p><h4>LICENSE</h4>
111
- The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a></p>
112
- <p><h4>Biases and content acknowledgment</h4>
113
- Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the <a href="https://huggingface.co/CompVis/stable-diffusion-v1-4" style="text-decoration: underline;" target="_blank">model card</a></p>
114
- </div>
115
- """
 
 
 
 
 
 
116
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
- image_blocks.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
 
 
 
 
 
 
3
  import os
4
+ import random
5
  import uuid
6
+
7
+ import gradio as gr
8
+ import numpy as np
9
+ from PIL import Image
10
+ import spaces
11
  import torch
12
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
13
+
14
+ DESCRIPTION = """
15
+ # DALL•E 3 XL v2
16
+ """
17
+
18
+ def save_image(img):
19
+ unique_name = str(uuid.uuid4()) + ".png"
20
+ img.save(unique_name)
21
+ return unique_name
22
+
23
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
24
+ if randomize_seed:
25
+ seed = random.randint(0, MAX_SEED)
26
+ return seed
27
+
28
+ MAX_SEED = np.iinfo(np.int32).max
29
+
30
+ if not torch.cuda.is_available():
31
+ DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
32
+
33
+ MAX_SEED = np.iinfo(np.int32).max
34
 
35
+ USE_TORCH_COMPILE = 0
36
+ ENABLE_CPU_OFFLOAD = 0
37
 
 
38
 
39
+ if torch.cuda.is_available():
40
+ pipe = StableDiffusionXLPipeline.from_pretrained(
41
+ "fluently/Fluently-XL-v2",
42
+ torch_dtype=torch.float16,
43
+ use_safetensors=True,
44
+ )
45
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
46
+
47
+
48
+ pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
49
+ pipe.set_adapters("dalle")
50
 
51
+ pipe.to("cuda")
52
+
53
+
54
 
55
+ @spaces.GPU(enable_queue=True)
56
+ def generate(
57
+ prompt: str,
58
+ negative_prompt: str = "",
59
+ use_negative_prompt: bool = False,
60
+ seed: int = 0,
61
+ width: int = 1024,
62
+ height: int = 1024,
63
+ guidance_scale: float = 3,
64
+ randomize_seed: bool = False,
65
+ progress=gr.Progress(track_tqdm=True),
66
+ ):
67
 
68
+
69
+ seed = int(randomize_seed_fn(seed, randomize_seed))
70
+
71
+ if not use_negative_prompt:
72
+ negative_prompt = "" # type: ignore
73
+
74
+ images = pipe(
75
+ prompt=prompt,
76
+ negative_prompt=negative_prompt,
77
+ width=width,
78
+ height=height,
79
+ guidance_scale=guidance_scale,
80
+ num_inference_steps=25,
81
+ num_images_per_prompt=1,
82
+ cross_attention_kwargs={"scale": 0.65},
83
+ output_type="pil",
84
+ ).images
85
+ image_paths = [save_image(img) for img in images]
86
+ print(image_paths)
87
+ return image_paths, seed
88
+
89
+ examples = [
90
+ "neon holography crystal cat",
91
+ "a cat eating a piece of cheese",
92
+ "an astronaut riding a horse in space",
93
+ "a cartoon of a boy playing with a tiger",
94
+ "a cute robot artist painting on an easel, concept art",
95
+ "a close up of a woman wearing a transparent, prismatic, elaborate nemeses headdress, over the should pose, brown skin-tone"
96
+ ]
97
 
98
  css = '''
99
+ .gradio-container{max-width: 560px !important}
100
+ h1{text-align:center}
101
+ footer {
102
+ visibility: hidden
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  }
104
  '''
105
+ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
106
+ gr.Markdown(DESCRIPTION)
107
+ gr.DuplicateButton(
108
+ value="Duplicate Space for private use",
109
+ elem_id="duplicate-button",
110
+ visible=False,
111
+ )
112
 
 
 
 
113
  with gr.Group():
114
+ with gr.Row():
115
+ prompt = gr.Text(
116
+ label="Prompt",
117
+ show_label=False,
118
+ max_lines=1,
119
+ placeholder="Enter your prompt",
120
+ container=False,
121
+ )
122
+ run_button = gr.Button("Run", scale=0)
123
+ result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
124
+ with gr.Accordion("Advanced options", open=False):
125
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
126
+ negative_prompt = gr.Text(
127
+ label="Negative prompt",
128
+ lines=4,
129
+ max_lines=6,
130
+ value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
131
+ placeholder="Enter a negative prompt",
132
+ visible=True,
133
+ )
134
+ seed = gr.Slider(
135
+ label="Seed",
136
+ minimum=0,
137
+ maximum=MAX_SEED,
138
+ step=1,
139
+ value=0,
140
+ visible=True
141
+ )
142
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
143
+ with gr.Row(visible=True):
144
+ width = gr.Slider(
145
+ label="Width",
146
+ minimum=512,
147
+ maximum=2048,
148
+ step=8,
149
+ value=1024,
150
+ )
151
+ height = gr.Slider(
152
+ label="Height",
153
+ minimum=512,
154
+ maximum=2048,
155
+ step=8,
156
+ value=1024,
157
  )
158
+ with gr.Row():
159
+ guidance_scale = gr.Slider(
160
+ label="Guidance Scale",
161
+ minimum=0.1,
162
+ maximum=20.0,
163
+ step=0.1,
164
+ value=6,
165
+ )
166
+
167
+ gr.Examples(
168
+ examples=examples,
169
+ inputs=prompt,
170
+ outputs=[result, seed],
171
+ fn=generate,
172
+ cache_examples=False,
173
+ )
174
+
175
+ use_negative_prompt.change(
176
+ fn=lambda x: gr.update(visible=x),
177
+ inputs=use_negative_prompt,
178
+ outputs=negative_prompt,
179
+ api_name=False,
180
+ )
181
+
182
 
183
+ gr.on(
184
+ triggers=[
185
+ prompt.submit,
186
+ negative_prompt.submit,
187
+ run_button.click,
188
+ ],
189
+ fn=generate,
190
+ inputs=[
191
+ prompt,
192
+ negative_prompt,
193
+ use_negative_prompt,
194
+ seed,
195
+ width,
196
+ height,
197
+ guidance_scale,
198
+ randomize_seed,
199
+ ],
200
+ outputs=[result, seed],
201
+ api_name="run",
202
+ )
203
+
204
+ if __name__ == "__main__":
205
+ demo.queue(max_size=20).launch(show_api=False, debug=False)
header.html DELETED
@@ -1,24 +0,0 @@
1
- <div style="text-align: center; max-width: 650px; margin: 0 auto;">
2
- <div style="
3
- display: inline-flex;
4
- gap: 0.8rem;
5
- font-size: 1.75rem;
6
- justify-content: center;
7
- margin-bottom: 10px;
8
- ">
9
- <img
10
- src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1665970599545-634cb15a4abe8405758d2e7e.jpeg"
11
- alt="RunwayML" width="64px">
12
- <h1 style="font-weight: 900; align-items: center; margin-bottom: 7px; margin-top: 20px;">
13
- RunwayML Stable Diffusion Inpainting 🎨
14
- </h1>
15
- </div>
16
- <div>
17
- <p style="align-items: center; margin-bottom: 7px;">
18
- Stable Diffusion Inpainting, add a mask and text prompt for what you want to replace <br>For faster
19
- generation you can try
20
- <a href="https://app.runwayml.com/video-tools/teams/akhaliq/ai-tools/erase-and-replace"
21
- style="text-decoration: underline;" target="_blank">erase and replace tool on Runway</a>
22
- </p>
23
- </div>
24
- </div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
init_image.png DELETED
Binary file (407 kB)
 
inpainting.py DELETED
@@ -1,194 +0,0 @@
1
- import inspect
2
- from typing import List, Optional, Union
3
-
4
- import numpy as np
5
- import torch
6
-
7
- import PIL
8
- from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel
9
- from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
10
- from tqdm.auto import tqdm
11
- from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
12
-
13
-
14
- def preprocess_image(image):
15
- w, h = image.size
16
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
17
- image = image.resize((w, h), resample=PIL.Image.LANCZOS)
18
- image = np.array(image).astype(np.float32) / 255.0
19
- image = image[None].transpose(0, 3, 1, 2)
20
- image = torch.from_numpy(image)
21
- return 2.0 * image - 1.0
22
-
23
-
24
- def preprocess_mask(mask):
25
- mask = mask.convert("L")
26
- w, h = mask.size
27
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
28
- mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
29
- mask = np.array(mask).astype(np.float32) / 255.0
30
- mask = np.tile(mask, (4, 1, 1))
31
- mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
32
- mask = 1 - mask # repaint white, keep black
33
- mask = torch.from_numpy(mask)
34
- return mask
35
-
36
- class StableDiffusionInpaintingPipeline(DiffusionPipeline):
37
- def __init__(
38
- self,
39
- vae: AutoencoderKL,
40
- text_encoder: CLIPTextModel,
41
- tokenizer: CLIPTokenizer,
42
- unet: UNet2DConditionModel,
43
- scheduler: Union[DDIMScheduler, PNDMScheduler],
44
- safety_checker: StableDiffusionSafetyChecker,
45
- feature_extractor: CLIPFeatureExtractor,
46
- ):
47
- super().__init__()
48
- scheduler = scheduler.set_format("pt")
49
- self.register_modules(
50
- vae=vae,
51
- text_encoder=text_encoder,
52
- tokenizer=tokenizer,
53
- unet=unet,
54
- scheduler=scheduler,
55
- safety_checker=safety_checker,
56
- feature_extractor=feature_extractor,
57
- )
58
-
59
- @torch.no_grad()
60
- def __call__(
61
- self,
62
- prompt: Union[str, List[str]],
63
- init_image: torch.FloatTensor,
64
- mask_image: torch.FloatTensor,
65
- strength: float = 0.8,
66
- num_inference_steps: Optional[int] = 50,
67
- guidance_scale: Optional[float] = 7.5,
68
- eta: Optional[float] = 0.0,
69
- generator: Optional[torch.Generator] = None,
70
- output_type: Optional[str] = "pil",
71
- ):
72
-
73
- if isinstance(prompt, str):
74
- batch_size = 1
75
- elif isinstance(prompt, list):
76
- batch_size = len(prompt)
77
- else:
78
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
79
-
80
- if strength < 0 or strength > 1:
81
- raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
82
-
83
- # set timesteps
84
- accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
85
- extra_set_kwargs = {}
86
- offset = 0
87
- if accepts_offset:
88
- offset = 1
89
- extra_set_kwargs["offset"] = 1
90
-
91
- self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
92
-
93
- # preprocess image
94
- init_image = preprocess_image(init_image).to(self.device)
95
-
96
- # encode the init image into latents and scale the latents
97
- init_latent_dist = self.vae.encode(init_image).latent_dist
98
- init_latents = init_latent_dist.sample(generator=generator)
99
- init_latents = 0.18215 * init_latents
100
-
101
- # prepare init_latents noise to latents
102
- init_latents = torch.cat([init_latents] * batch_size)
103
- init_latents_orig = init_latents
104
-
105
- # preprocess mask
106
- mask = preprocess_mask(mask_image).to(self.device)
107
- mask = torch.cat([mask] * batch_size)
108
-
109
- # check sizes
110
- if not mask.shape == init_latents.shape:
111
- raise ValueError(f"The mask and init_image should be the same size!")
112
-
113
- # get the original timestep using init_timestep
114
- init_timestep = int(num_inference_steps * strength) + offset
115
- init_timestep = min(init_timestep, num_inference_steps)
116
- timesteps = self.scheduler.timesteps[-init_timestep]
117
- timesteps = torch.tensor([timesteps] * batch_size, dtype=torch.long, device=self.device)
118
-
119
- # add noise to latents using the timesteps
120
- noise = torch.randn(init_latents.shape, generator=generator, device=self.device)
121
- init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
122
-
123
- # get prompt text embeddings
124
- text_input = self.tokenizer(
125
- prompt,
126
- padding="max_length",
127
- max_length=self.tokenizer.model_max_length,
128
- truncation=True,
129
- return_tensors="pt",
130
- )
131
- text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
132
-
133
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
134
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
135
- # corresponds to doing no classifier free guidance.
136
- do_classifier_free_guidance = guidance_scale > 1.0
137
- # get unconditional embeddings for classifier free guidance
138
- if do_classifier_free_guidance:
139
- max_length = text_input.input_ids.shape[-1]
140
- uncond_input = self.tokenizer(
141
- [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
142
- )
143
- uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
144
-
145
- # For classifier free guidance, we need to do two forward passes.
146
- # Here we concatenate the unconditional and text embeddings into a single batch
147
- # to avoid doing two forward passes
148
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
149
-
150
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
151
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
152
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
153
- # and should be between [0, 1]
154
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
155
- extra_step_kwargs = {}
156
- if accepts_eta:
157
- extra_step_kwargs["eta"] = eta
158
-
159
- latents = init_latents
160
- t_start = max(num_inference_steps - init_timestep + offset, 0)
161
- for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
162
- # expand the latents if we are doing classifier free guidance
163
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
164
-
165
- # predict the noise residual
166
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
167
-
168
- # perform guidance
169
- if do_classifier_free_guidance:
170
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
171
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
172
-
173
- # compute the previous noisy sample x_t -> x_t-1
174
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
175
-
176
- # masking
177
- init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
178
- latents = (init_latents_proper * mask) + (latents * (1 - mask))
179
-
180
- # scale and decode the image latents with vae
181
- latents = 1 / 0.18215 * latents
182
- image = self.vae.decode(latents).sample
183
-
184
- image = (image / 2 + 0.5).clamp(0, 1)
185
- image = image.cpu().permute(0, 2, 3, 1).numpy()
186
-
187
- # run safety checker
188
- safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
189
- image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
190
-
191
- if output_type == "pil":
192
- image = self.numpy_to_pil(image)
193
-
194
- return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mask_image.png DELETED
Binary file (11.9 kB)
 
requirements.txt CHANGED
@@ -1,11 +1,5 @@
1
- --extra-index-url https://download.pytorch.org/whl/cu113
2
  torch
3
- torchvision
4
- git+https://github.com/huggingface/diffusers.git
5
  transformers
6
- ftfy
7
- numpy
8
- matplotlib
9
- uuid
10
- opencv-python
11
- git+https://github.com/openai/CLIP.git
 
 
1
  torch
2
+ diffusers
 
3
  transformers
4
+ gradio
5
+ peft
 
 
 
 
share_btn.py DELETED
@@ -1,93 +0,0 @@
1
- community_icon_html = """<svg id="share-btn-share-icon" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 32 32">
2
- <path d="M20.6081 3C21.7684 3 22.8053 3.49196 23.5284 4.38415C23.9756 4.93678 24.4428 5.82749 24.4808 7.16133C24.9674 7.01707 25.4353 6.93643 25.8725 6.93643C26.9833 6.93643 27.9865 7.37587 28.696 8.17411C29.6075 9.19872 30.0124 10.4579 29.8361 11.7177C29.7523 12.3177 29.5581 12.8555 29.2678 13.3534C29.8798 13.8646 30.3306 14.5763 30.5485 15.4322C30.719 16.1032 30.8939 17.5006 29.9808 18.9403C30.0389 19.0342 30.0934 19.1319 30.1442 19.2318C30.6932 20.3074 30.7283 21.5229 30.2439 22.6548C29.5093 24.3704 27.6841 25.7219 24.1397 27.1727C21.9347 28.0753 19.9174 28.6523 19.8994 28.6575C16.9842 29.4379 14.3477 29.8345 12.0653 29.8345C7.87017 29.8345 4.8668 28.508 3.13831 25.8921C0.356375 21.6797 0.754104 17.8269 4.35369 14.1131C6.34591 12.058 7.67023 9.02782 7.94613 8.36275C8.50224 6.39343 9.97271 4.20438 12.4172 4.20438H12.4179C12.6236 4.20438 12.8314 4.2214 13.0364 4.25468C14.107 4.42854 15.0428 5.06476 15.7115 6.02205C16.4331 5.09583 17.134 4.359 17.7682 3.94323C18.7242 3.31737 19.6794 3 20.6081 3ZM20.6081 5.95917C20.2427 5.95917 19.7963 6.1197 19.3039 6.44225C17.7754 7.44319 14.8258 12.6772 13.7458 14.7131C13.3839 15.3952 12.7655 15.6837 12.2086 15.6837C11.1036 15.6837 10.2408 14.5497 12.1076 13.1085C14.9146 10.9402 13.9299 7.39584 12.5898 7.1776C12.5311 7.16799 12.4731 7.16355 12.4172 7.16355C11.1989 7.16355 10.6615 9.33114 10.6615 9.33114C10.6615 9.33114 9.0863 13.4148 6.38031 16.206C3.67434 18.998 3.5346 21.2388 5.50675 24.2246C6.85185 26.2606 9.42666 26.8753 12.0653 26.8753C14.8021 26.8753 17.6077 26.2139 19.1799 25.793C19.2574 25.7723 28.8193 22.984 27.6081 20.6107C27.4046 20.212 27.0693 20.0522 26.6471 20.0522C24.9416 20.0522 21.8393 22.6726 20.5057 22.6726C20.2076 22.6726 19.9976 22.5416 19.9116 22.222C19.3433 20.1173 28.552 19.2325 27.7758 16.1839C27.639 15.6445 27.2677 15.4256 26.746 15.4263C24.4923 15.4263 19.4358 19.5181 18.3759 19.5181C18.2949 19.5181 18.2368 19.4937 18.2053 19.4419C17.6743 18.557 17.9653 17.9394 21.7082 15.6009C25.4511 13.2617 28.0783 11.8545 26.5841 10.1752C26.4121 9.98141 26.1684 9.8956 25.8725 9.8956C23.6001 9.89634 18.2311 14.9403 18.2311 14.9403C18.2311 14.9403 16.7821 16.496 15.9057 16.496C15.7043 16.496 15.533 16.4139 15.4169 16.2112C14.7956 15.1296 21.1879 10.1286 21.5484 8.06535C21.7928 6.66715 21.3771 5.95917 20.6081 5.95917Z" fill="#FF9D00"></path>
3
- <path d="M5.50686 24.2246C3.53472 21.2387 3.67446 18.9979 6.38043 16.206C9.08641 13.4147 10.6615 9.33111 10.6615 9.33111C10.6615 9.33111 11.2499 6.95933 12.59 7.17757C13.93 7.39581 14.9139 10.9401 12.1069 13.1084C9.29997 15.276 12.6659 16.7489 13.7459 14.713C14.8258 12.6772 17.7747 7.44316 19.304 6.44221C20.8326 5.44128 21.9089 6.00204 21.5484 8.06532C21.188 10.1286 14.795 15.1295 15.4171 16.2118C16.0391 17.2934 18.2312 14.9402 18.2312 14.9402C18.2312 14.9402 25.0907 8.49588 26.5842 10.1752C28.0776 11.8545 25.4512 13.2616 21.7082 15.6008C17.9646 17.9393 17.6744 18.557 18.2054 19.4418C18.7372 20.3266 26.9998 13.1351 27.7759 16.1838C28.5513 19.2324 19.3434 20.1173 19.9117 22.2219C20.48 24.3274 26.3979 18.2382 27.6082 20.6107C28.8193 22.9839 19.2574 25.7722 19.18 25.7929C16.0914 26.62 8.24723 28.3726 5.50686 24.2246Z" fill="#FFD21E"></path>
4
- </svg>"""
5
-
6
- loading_icon_html = """<svg id="share-btn-loading-icon" style="display:none;" class="animate-spin"
7
- style="color: #ffffff;
8
- "
9
- xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" aria-hidden="true" fill="none" focusable="false" role="img" width="1em" height="1em" preserveAspectRatio="xMidYMid meet" viewBox="0 0 24 24"><circle style="opacity: 0.25;" cx="12" cy="12" r="10" stroke="white" stroke-width="4"></circle><path style="opacity: 0.75;" fill="white" d="M4 12a8 8 0 018-8V0C5.373 0 0 5.373 0 12h4zm2 5.291A7.962 7.962 0 014 12H0c0 3.042 1.135 5.824 3 7.938l3-2.647z"></path></svg>"""
10
-
11
- share_js = """async () => {
12
- async function uploadFile(file){
13
- const UPLOAD_URL = 'https://huggingface.co/uploads';
14
- const response = await fetch(UPLOAD_URL, {
15
- method: 'POST',
16
- headers: {
17
- 'Content-Type': file.type,
18
- 'X-Requested-With': 'XMLHttpRequest',
19
- },
20
- body: file, /// <- File inherits from Blob
21
- });
22
- const url = await response.text();
23
- return url;
24
- }
25
-
26
- async function getInputImgFile(imgCanvas){
27
- const blob = await new Promise(resolve => imgCanvas.toBlob(resolve));
28
- const imgId = Date.now() % 200;
29
- const fileName = `sd-inpainting-${{imgId}}.png`;
30
- return new File([blob], fileName, { type: 'image/png' });
31
- }
32
-
33
- async function getOutoutImgFile(imgEl){
34
- const res = await fetch(imgEl.src);
35
- const blob = await res.blob();
36
- const imgId = Date.now() % 200;
37
- const fileName = `sd-inpainting-${{imgId}}.png`;
38
- return new File([blob], fileName, { type: 'image/png' });
39
- }
40
-
41
- const gradioEl = document.querySelector('body > gradio-app');
42
- // const gradioEl = document.querySelector("gradio-app").shadowRoot;
43
- const inputImgCanvas = gradioEl.querySelector('canvas[key="drawing"]');
44
- const outputImgEl = gradioEl.querySelector('#output-img img');
45
- const promptTxt = gradioEl.querySelector('#input-text textarea').value;
46
- let titleTxt = promptTxt;
47
- if(titleTxt.length > 100){
48
- titleTxt = titleTxt.slice(0, 100) + ' ...';
49
- }
50
- const shareBtnEl = gradioEl.querySelector('#share-btn');
51
- const shareIconEl = gradioEl.querySelector('#share-btn-share-icon');
52
- const loadingIconEl = gradioEl.querySelector('#share-btn-loading-icon');
53
-
54
- if(!outputImgEl){
55
- return;
56
- };
57
-
58
- shareBtnEl.style.pointerEvents = 'none';
59
- shareIconEl.style.display = 'none';
60
- loadingIconEl.style.removeProperty('display');
61
-
62
- const inputImgFile = await getInputImgFile(inputImgCanvas);
63
- const outputImgFile = await getOutoutImgFile(outputImgEl);
64
- const files = [inputImgFile, outputImgFile];
65
-
66
- const urls = await Promise.all(files.map((f) => uploadFile(f)));
67
-
68
- const htmlImgs = urls.map(url => `<img src='${url}' style='max-width: 450px;'>`);
69
- const [inputImgUrl, outputImgUrl] = htmlImgs;
70
-
71
- const descriptionMd = `<div style='display: flex; flex-wrap: wrap; column-gap: 0.75rem;'>
72
- <div>
73
- ${inputImgUrl}
74
-
75
- ${promptTxt}
76
- </div>
77
- <div>
78
- ${outputImgUrl}
79
- </div>
80
- </div>`;
81
-
82
- const params = new URLSearchParams({
83
- title: titleTxt,
84
- description: descriptionMd,
85
- });
86
-
87
- const paramsStr = params.toString();
88
- window.open(`${window.location.href}/discussions/new?${paramsStr}`, '_blank');
89
-
90
- shareBtnEl.style.removeProperty('pointer-events');
91
- shareIconEl.style.removeProperty('display');
92
- loadingIconEl.style.display = 'none';
93
- }"""