Spaces:
Build error
Build error
File size: 15,748 Bytes
e49e418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import argparse
import functools
import logging
import math
from random import choice, randint
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.utils import checkpoint
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler
from tqdm.auto import tqdm
from transformers import get_scheduler, AutoTokenizer, AdamW, SchedulerType, AutoModelForSequenceClassification
logger = logging.getLogger(__name__)
def get_parser():
parser = argparse.ArgumentParser(description="Train ELI5 retriever")
parser.add_argument(
"--dataset_name",
type=str,
default="vblagoje/lfqa",
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=1024,
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=1024,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
)
parser.add_argument(
"--checkpoint_batch_size",
type=int,
default=32,
)
parser.add_argument(
"--pretrained_model_name",
type=str,
default="google/bert_uncased_L-8_H-768_A-12",
)
parser.add_argument(
"--model_save_name",
type=str,
default="eli5_retriever_model_l-12_h-768_b-512-512",
)
parser.add_argument(
"--learning_rate",
type=float,
default=2e-4,
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.2,
)
parser.add_argument(
"--log_freq",
type=int,
default=500,
help="Log train/validation loss every log_freq update steps"
)
parser.add_argument(
"--num_train_epochs",
type=int,
default=4,
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear", # this is linear with warmup
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=100,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--warmup_percentage",
type=float,
default=0.08,
help="Number of steps for the warmup in the lr scheduler."
)
return parser
class RetrievalQAEmbedder(torch.nn.Module):
def __init__(self, sent_encoder):
super(RetrievalQAEmbedder, self).__init__()
dim = sent_encoder.config.hidden_size
self.bert_query = sent_encoder
self.output_dim = 128
self.project_query = torch.nn.Linear(dim, self.output_dim, bias=False)
self.project_doc = torch.nn.Linear(dim, self.output_dim, bias=False)
self.ce_loss = torch.nn.CrossEntropyLoss(reduction="mean")
def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
# reproduces BERT forward pass with checkpointing
if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
return self.bert_query(input_ids, attention_mask=attention_mask)[1]
else:
# prepare implicit variables
device = input_ids.device
input_shape = input_ids.size()
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
head_mask = [None] * self.bert_query.config.num_hidden_layers
extended_attention_mask: torch.Tensor = self.bert_query.get_extended_attention_mask(
attention_mask, input_shape, device
)
# define function for checkpointing
def partial_encode(*inputs):
encoder_outputs = self.bert_query.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask, )
sequence_output = encoder_outputs[0]
pooled_output = self.bert_query.pooler(sequence_output)
return pooled_output
# run embedding layer on everything at once
embedding_output = self.bert_query.embeddings(
input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
)
# run encoding and pooling on one mini-batch at a time
pooled_output_list = []
for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
b_embedding_output = embedding_output[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
b_attention_mask = extended_attention_mask[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
pooled_output_list.append(pooled_output)
return torch.cat(pooled_output_list, dim=0)
def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
return self.project_query(q_reps)
def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
return self.project_doc(a_reps)
def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
device = q_ids.device
q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
compare_scores = torch.mm(q_reps, a_reps.t())
loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
loss = (loss_qa + loss_aq) / 2
return loss
class ELI5DatasetQARetriever(Dataset):
def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
self.data = examples_array
self.answer_thres = extra_answer_threshold
self.min_length = min_answer_length
self.training = training
self.n_samples = self.data.num_rows if n_samples is None else n_samples
def __len__(self):
return self.n_samples
def make_example(self, idx):
example = self.data[idx]
question = example["title"]
if self.training:
answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))]
answer_tab = choice(answers).split(" ")
start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
answer_span = " ".join(answer_tab[start_idx:])
else:
answer_span = example["answers"]["text"][0]
return question, answer_span
def __getitem__(self, idx):
return self.make_example(idx % self.data.num_rows)
def make_qa_retriever_batch(qa_list, tokenizer, max_len=64):
q_ls = [q for q, a in qa_list]
a_ls = [a for q, a in qa_list]
q_toks = tokenizer(q_ls, padding="max_length", max_length=max_len, truncation=True)
q_ids, q_mask = (
torch.LongTensor(q_toks["input_ids"]),
torch.LongTensor(q_toks["attention_mask"])
)
a_toks = tokenizer(a_ls, padding="max_length", max_length=max_len, truncation=True)
a_ids, a_mask = (
torch.LongTensor(a_toks["input_ids"]),
torch.LongTensor(a_toks["attention_mask"]),
)
return q_ids, q_mask, a_ids, a_mask
def evaluate_qa_retriever(model, data_loader):
# make iterator
epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
tot_loss = 0.0
with torch.no_grad():
for step, batch in enumerate(epoch_iterator):
q_ids, q_mask, a_ids, a_mask = batch
loss = model(q_ids, q_mask, a_ids, a_mask)
tot_loss += loss.item()
return tot_loss / (step + 1)
def train(config):
set_seed(42)
args = config["args"]
data_files = {"train": "train.json", "validation": "validation.json", "test": "test.json"}
eli5 = load_dataset(args.dataset_name, data_files=data_files)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
logger.info(accelerator.state)
# prepare torch Dataset objects
train_dataset = ELI5DatasetQARetriever(eli5['train'], training=True)
valid_dataset = ELI5DatasetQARetriever(eli5['validation'], training=False)
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
base_model = AutoModel.from_pretrained(args.pretrained_model_name)
model = RetrievalQAEmbedder(base_model)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
sampler=RandomSampler(train_dataset), collate_fn=model_collate_fn)
model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size,
sampler=SequentialSampler(valid_dataset), collate_fn=model_collate_fn)
# train the model
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer,
train_dataloader, eval_dataloader)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
args.warmup_percentage)
scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
logger.info(f" Warmup steps = {num_warmup_steps}")
logger.info(f" Logging training progress every {args.log_freq} optimization steps")
loc_loss = 0.0
current_loss = 0.0
checkpoint_step = 0
completed_steps = checkpoint_step
progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step,
disable=not accelerator.is_local_main_process)
for epoch in range(args.num_train_epochs):
model.train()
batch = next(iter(train_dataloader))
for step in range(1000):
#for step, batch in enumerate(train_dataloader, start=checkpoint_step):
# model inputs
q_ids, q_mask, a_ids, a_mask = batch
pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
loss = pre_loss.sum() / args.gradient_accumulation_steps
accelerator.backward(loss)
loc_loss += loss.item()
if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
current_loss = loc_loss
optimizer.step()
scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
progress_bar.set_postfix(loss=loc_loss)
loc_loss = 0
completed_steps += 1
if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
logger.info(f"Train loss {current_loss} , eval loss {eval_loss}")
if args.wandb and accelerator.is_local_main_process:
import wandb
wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps})
if completed_steps >= args.max_train_steps:
break
logger.info("Saving model {}".format(args.model_save_name))
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss))
if __name__ == "__main__":
parser = get_parser()
parser.add_argument(
"--wandb",
action="store_true",
help="Whether to use W&B logging",
)
main_args, _ = parser.parse_known_args()
config = {"args": main_args}
if main_args.wandb:
import wandb
wandb.init(project="Retriever")
train(config=config)
|