File size: 15,748 Bytes
e49e418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import argparse
import functools
import logging
import math
from random import choice, randint

import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from datasets import load_dataset
from torch.utils import checkpoint
from torch.utils.data import Dataset, RandomSampler, DataLoader, SequentialSampler
from tqdm.auto import tqdm
from transformers import get_scheduler, AutoTokenizer, AdamW, SchedulerType, AutoModelForSequenceClassification

logger = logging.getLogger(__name__)


def get_parser():
    parser = argparse.ArgumentParser(description="Train ELI5 retriever")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default="vblagoje/lfqa",
        help="The name of the dataset to use (via the datasets library).",
    )

    parser.add_argument(
        "--per_device_train_batch_size",
        type=int,
        default=1024,
    )

    parser.add_argument(
        "--per_device_eval_batch_size",
        type=int,
        default=1024,
        help="Batch size (per device) for the evaluation dataloader.",
    )

    parser.add_argument(
        "--max_length",
        type=int,
        default=128,
    )

    parser.add_argument(
        "--checkpoint_batch_size",
        type=int,
        default=32,
    )

    parser.add_argument(
        "--pretrained_model_name",
        type=str,
        default="google/bert_uncased_L-8_H-768_A-12",
    )

    parser.add_argument(
        "--model_save_name",
        type=str,
        default="eli5_retriever_model_l-12_h-768_b-512-512",
    )

    parser.add_argument(
        "--learning_rate",
        type=float,
        default=2e-4,
    )

    parser.add_argument(
        "--weight_decay",
        type=float,
        default=0.2,
    )

    parser.add_argument(
        "--log_freq",
        type=int,
        default=500,
        help="Log train/validation loss every log_freq update steps"
    )

    parser.add_argument(
        "--num_train_epochs",
        type=int,
        default=4,
    )

    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
    )

    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )

    parser.add_argument(
        "--lr_scheduler_type",
        type=SchedulerType,
        default="linear",  # this is linear with warmup
        help="The scheduler type to use.",
        choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
    )

    parser.add_argument(
        "--num_warmup_steps",
        type=int,
        default=100,
        help="Number of steps for the warmup in the lr scheduler."
    )

    parser.add_argument(
        "--warmup_percentage",
        type=float,
        default=0.08,
        help="Number of steps for the warmup in the lr scheduler."
    )
    return parser


class RetrievalQAEmbedder(torch.nn.Module):
    def __init__(self, sent_encoder):
        super(RetrievalQAEmbedder, self).__init__()
        dim = sent_encoder.config.hidden_size
        self.bert_query = sent_encoder
        self.output_dim = 128
        self.project_query = torch.nn.Linear(dim, self.output_dim, bias=False)
        self.project_doc = torch.nn.Linear(dim, self.output_dim, bias=False)
        self.ce_loss = torch.nn.CrossEntropyLoss(reduction="mean")

    def embed_sentences_checkpointed(self, input_ids, attention_mask, checkpoint_batch_size=-1):
        # reproduces BERT forward pass with checkpointing
        if checkpoint_batch_size < 0 or input_ids.shape[0] < checkpoint_batch_size:
            return self.bert_query(input_ids, attention_mask=attention_mask)[1]
        else:
            # prepare implicit variables
            device = input_ids.device
            input_shape = input_ids.size()
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
            head_mask = [None] * self.bert_query.config.num_hidden_layers
            extended_attention_mask: torch.Tensor = self.bert_query.get_extended_attention_mask(
                attention_mask, input_shape, device
            )

            # define function for checkpointing
            def partial_encode(*inputs):
                encoder_outputs = self.bert_query.encoder(inputs[0], attention_mask=inputs[1], head_mask=head_mask, )
                sequence_output = encoder_outputs[0]
                pooled_output = self.bert_query.pooler(sequence_output)
                return pooled_output

            # run embedding layer on everything at once
            embedding_output = self.bert_query.embeddings(
                input_ids=input_ids, position_ids=None, token_type_ids=token_type_ids, inputs_embeds=None
            )
            # run encoding and pooling on one mini-batch at a time
            pooled_output_list = []
            for b in range(math.ceil(input_ids.shape[0] / checkpoint_batch_size)):
                b_embedding_output = embedding_output[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
                b_attention_mask = extended_attention_mask[b * checkpoint_batch_size: (b + 1) * checkpoint_batch_size]
                pooled_output = checkpoint.checkpoint(partial_encode, b_embedding_output, b_attention_mask)
                pooled_output_list.append(pooled_output)
            return torch.cat(pooled_output_list, dim=0)

    def embed_questions(self, q_ids, q_mask, checkpoint_batch_size=-1):
        q_reps = self.embed_sentences_checkpointed(q_ids, q_mask, checkpoint_batch_size)
        return self.project_query(q_reps)

    def embed_answers(self, a_ids, a_mask, checkpoint_batch_size=-1):
        a_reps = self.embed_sentences_checkpointed(a_ids, a_mask, checkpoint_batch_size)
        return self.project_doc(a_reps)

    def forward(self, q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=-1):
        device = q_ids.device
        q_reps = self.embed_questions(q_ids, q_mask, checkpoint_batch_size)
        a_reps = self.embed_answers(a_ids, a_mask, checkpoint_batch_size)
        compare_scores = torch.mm(q_reps, a_reps.t())
        loss_qa = self.ce_loss(compare_scores, torch.arange(compare_scores.shape[1]).to(device))
        loss_aq = self.ce_loss(compare_scores.t(), torch.arange(compare_scores.shape[0]).to(device))
        loss = (loss_qa + loss_aq) / 2
        return loss


class ELI5DatasetQARetriever(Dataset):
    def __init__(self, examples_array, extra_answer_threshold=3, min_answer_length=64, training=True, n_samples=None):
        self.data = examples_array
        self.answer_thres = extra_answer_threshold
        self.min_length = min_answer_length
        self.training = training
        self.n_samples = self.data.num_rows if n_samples is None else n_samples

    def __len__(self):
        return self.n_samples

    def make_example(self, idx):
        example = self.data[idx]
        question = example["title"]
        if self.training:
            answers = [a for i, (a, sc) in enumerate(zip(example["answers"]["text"], example["answers"]["score"]))]
            answer_tab = choice(answers).split(" ")
            start_idx = randint(0, max(0, len(answer_tab) - self.min_length))
            answer_span = " ".join(answer_tab[start_idx:])
        else:
            answer_span = example["answers"]["text"][0]
        return question, answer_span

    def __getitem__(self, idx):
        return self.make_example(idx % self.data.num_rows)


def make_qa_retriever_batch(qa_list, tokenizer, max_len=64):
    q_ls = [q for q, a in qa_list]
    a_ls = [a for q, a in qa_list]
    q_toks = tokenizer(q_ls, padding="max_length", max_length=max_len, truncation=True)
    q_ids, q_mask = (
        torch.LongTensor(q_toks["input_ids"]),
        torch.LongTensor(q_toks["attention_mask"])
    )
    a_toks = tokenizer(a_ls, padding="max_length", max_length=max_len, truncation=True)
    a_ids, a_mask = (
        torch.LongTensor(a_toks["input_ids"]),
        torch.LongTensor(a_toks["attention_mask"]),
    )
    return q_ids, q_mask, a_ids, a_mask


def evaluate_qa_retriever(model, data_loader):
    # make iterator
    epoch_iterator = tqdm(data_loader, desc="Iteration", disable=True)
    tot_loss = 0.0
    with torch.no_grad():
        for step, batch in enumerate(epoch_iterator):
            q_ids, q_mask, a_ids, a_mask = batch
            loss = model(q_ids, q_mask, a_ids, a_mask)
            tot_loss += loss.item()
        return tot_loss / (step + 1)


def train(config):
    set_seed(42)
    args = config["args"]
    data_files = {"train": "train.json", "validation": "validation.json", "test": "test.json"}
    eli5 = load_dataset(args.dataset_name, data_files=data_files)

    # Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
    accelerator = Accelerator()
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
    logger.info(accelerator.state)

    # prepare torch Dataset objects
    train_dataset = ELI5DatasetQARetriever(eli5['train'], training=True)
    valid_dataset = ELI5DatasetQARetriever(eli5['validation'], training=False)

    tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_name)
    base_model = AutoModel.from_pretrained(args.pretrained_model_name)

    model = RetrievalQAEmbedder(base_model)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [
        {'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
         'weight_decay': args.weight_decay},
        {'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)

    model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
    train_dataloader = DataLoader(train_dataset, batch_size=args.per_device_train_batch_size,
                                  sampler=RandomSampler(train_dataset), collate_fn=model_collate_fn)

    model_collate_fn = functools.partial(make_qa_retriever_batch, tokenizer=tokenizer, max_len=args.max_length)
    eval_dataloader = DataLoader(valid_dataset, batch_size=args.per_device_eval_batch_size,
                                 sampler=SequentialSampler(valid_dataset), collate_fn=model_collate_fn)

    # train the model
    model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(model, optimizer,
                                                                              train_dataloader, eval_dataloader)
    # Scheduler and math around the number of training steps.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    else:
        args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    num_warmup_steps = args.num_warmup_steps if args.num_warmup_steps else math.ceil(args.max_train_steps *
                                                                                     args.warmup_percentage)
    scheduler = get_scheduler(
        name=args.lr_scheduler_type,
        optimizer=optimizer,
        num_warmup_steps=args.num_warmup_steps,
        num_training_steps=args.max_train_steps,
    )

    # Train!
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    logger.info(f"  Warmup steps = {num_warmup_steps}")
    logger.info(f"  Logging training progress every {args.log_freq} optimization steps")

    loc_loss = 0.0
    current_loss = 0.0
    checkpoint_step = 0

    completed_steps = checkpoint_step
    progress_bar = tqdm(range(args.max_train_steps), initial=checkpoint_step,
                        disable=not accelerator.is_local_main_process)
    for epoch in range(args.num_train_epochs):
        model.train()
        batch = next(iter(train_dataloader))
        for step in range(1000):
        #for step, batch in enumerate(train_dataloader, start=checkpoint_step):
            # model inputs
            q_ids, q_mask, a_ids, a_mask = batch
            pre_loss = model(q_ids, q_mask, a_ids, a_mask, checkpoint_batch_size=args.checkpoint_batch_size)
            loss = pre_loss.sum() / args.gradient_accumulation_steps
            accelerator.backward(loss)
            loc_loss += loss.item()
            if ((step + 1) % args.gradient_accumulation_steps == 0) or (step + 1 == len(train_dataloader)):
                current_loss = loc_loss
                optimizer.step()
                scheduler.step()
                optimizer.zero_grad()
                progress_bar.update(1)
                progress_bar.set_postfix(loss=loc_loss)
                loc_loss = 0
                completed_steps += 1

            if step % (args.log_freq * args.gradient_accumulation_steps) == 0:
                accelerator.wait_for_everyone()
                unwrapped_model = accelerator.unwrap_model(model)
                eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
                logger.info(f"Train loss {current_loss} , eval loss {eval_loss}")
                if args.wandb and accelerator.is_local_main_process:
                    import wandb
                    wandb.log({"loss": current_loss, "eval_loss": eval_loss, "step": completed_steps})

            if completed_steps >= args.max_train_steps:
                break

        logger.info("Saving model {}".format(args.model_save_name))
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        accelerator.save(unwrapped_model.state_dict(), "{}_{}.bin".format(args.model_save_name, epoch))
        eval_loss = evaluate_qa_retriever(unwrapped_model, eval_dataloader)
        logger.info("Evaluation loss epoch {:4d}: {:.3f}".format(epoch, eval_loss))


if __name__ == "__main__":
    parser = get_parser()
    parser.add_argument(
        "--wandb",
        action="store_true",
        help="Whether to use W&B logging",
    )
    main_args, _ = parser.parse_known_args()
    config = {"args": main_args}
    if main_args.wandb:
        import wandb
        wandb.init(project="Retriever")

    train(config=config)