Spaces:
Build error
Build error
import torch | |
from fastapi import FastAPI, Depends, status | |
from fastapi.responses import PlainTextResponse | |
from pydantic import BaseModel | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import time | |
from typing import Dict, List, Optional | |
import jwt | |
from decouple import config | |
from fastapi import Request, HTTPException | |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials | |
JWT_SECRET = config("secret") | |
JWT_ALGORITHM = config("algorithm") | |
app = FastAPI() | |
app.ready = False | |
device = ("cuda" if torch.cuda.is_available() else "cpu") | |
tokenizer = AutoTokenizer.from_pretrained('vblagoje/bart_lfqa') | |
model = AutoModelForSeq2SeqLM.from_pretrained('vblagoje/bart_lfqa').to(device) | |
_ = model.eval() | |
class JWTBearer(HTTPBearer): | |
def __init__(self, auto_error: bool = True): | |
super(JWTBearer, self).__init__(auto_error=auto_error) | |
async def __call__(self, request: Request): | |
credentials: HTTPAuthorizationCredentials = await super(JWTBearer, self).__call__(request) | |
if credentials: | |
if not credentials.scheme == "Bearer": | |
raise HTTPException(status_code=403, detail="Invalid authentication scheme.") | |
if not self.verify_jwt(credentials.credentials): | |
raise HTTPException(status_code=403, detail="Invalid token or expired token.") | |
return credentials.credentials | |
else: | |
raise HTTPException(status_code=403, detail="Invalid authorization code.") | |
def verify_jwt(self, jwtoken: str) -> bool: | |
isTokenValid: bool = False | |
try: | |
payload = decodeJWT(jwtoken) | |
except: | |
payload = None | |
if payload: | |
isTokenValid = True | |
return isTokenValid | |
def token_response(token: str): | |
return { | |
"access_token": token | |
} | |
def signJWT(user_id: str) -> Dict[str, str]: | |
payload = { | |
"user_id": user_id, | |
"expires": time.time() + 6000 | |
} | |
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM) | |
return token_response(token) | |
def decodeJWT(token: str) -> dict: | |
try: | |
decoded_token = jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM]) | |
return decoded_token if decoded_token["expires"] >= time.time() else None | |
except: | |
return {} | |
class LFQAParameters(BaseModel): | |
min_length: int = 50 | |
max_length: int = 250 | |
do_sample: bool = False | |
early_stopping: bool = True | |
num_beams: int = 8 | |
temperature: float = 1.0 | |
top_k: float = None | |
top_p: float = None | |
no_repeat_ngram_size: int = 3 | |
num_return_sequences: int = 1 | |
class InferencePayload(BaseModel): | |
model_input: str | |
parameters: Optional[LFQAParameters] = LFQAParameters() | |
def startup(): | |
app.ready = True | |
def healthz(): | |
if app.ready: | |
return PlainTextResponse("ok") | |
return PlainTextResponse("service unavailable", status_code=status.HTTP_503_SERVICE_UNAVAILABLE) | |
def generate(context: InferencePayload): | |
model_input = tokenizer(context.model_input, truncation=True, padding=True, return_tensors="pt") | |
param = context.parameters | |
generated_answers_encoded = model.generate(input_ids=model_input["input_ids"].to(device), | |
attention_mask=model_input["attention_mask"].to(device), | |
min_length=param.min_length, | |
max_length=param.max_length, | |
do_sample=param.do_sample, | |
early_stopping=param.early_stopping, | |
num_beams=param.num_beams, | |
temperature=param.temperature, | |
top_k=param.top_k, | |
top_p=param.top_p, | |
no_repeat_ngram_size=param.no_repeat_ngram_size, | |
num_return_sequences=param.num_return_sequences) | |
answers = tokenizer.batch_decode(generated_answers_encoded, skip_special_tokens=True, | |
clean_up_tokenization_spaces=True) | |
results = [] | |
for answer in answers: | |
results.append({"generated_text": answer}) | |
return results | |