Spaces:
Build error
Build error
import argparse | |
import random | |
import json | |
import re | |
from sentence_transformers import SentenceTransformer | |
from sentence_transformers.util import semantic_search, cos_sim | |
from tqdm.auto import tqdm | |
from datasets import load_dataset | |
from common import clean_answer, clean_question | |
def find_hard_negative_ctxs(dataset, dataset_embeddings, embedding_index: int, | |
exclude_answer_patterns, similarity_threshold=[0.5, 0.6], k=25, min_count=3): | |
hard_negative_ctxs = [] | |
results = semantic_search(dataset_embeddings[embedding_index], dataset_embeddings, top_k=k, | |
score_function=cos_sim) | |
# list if dicts | |
# [{'corpus_id': 8, 'score': -0.019427383318543434}, | |
# ... | |
# {'corpus_id': 10, 'score': -0.09040290117263794}] | |
# hard negative are most similar and negatives are most disimilar to embedding_index | |
hard_negative_results = results[0][1:k + 1] | |
assert len(hard_negative_results) > min_count * 2 | |
for r in hard_negative_results: | |
example = dataset[r["corpus_id"]] | |
if similarity_threshold[0] < r["score"] <= similarity_threshold[1]: | |
for a in example["answers"]["text"]: | |
hard_negative_ctxs.append({"title": "", "text": clean_answer(a)}) | |
if len(hard_negative_ctxs) > min_count: | |
break | |
return hard_negative_ctxs[:min_count] | |
def find_negative_ctxs(dataset, dataset_embeddings, embedding_index: int, | |
exclude_answer_patterns, similarity_threshold=0.1, k=7, min_count=3): | |
negative_ctxs = [] | |
random_sample = random.sample(range(len(dataset_embeddings)), k * 20) | |
similarities = cos_sim(dataset_embeddings[embedding_index], dataset_embeddings[random_sample])[0].tolist() | |
for idx, score in enumerate(similarities): | |
if score < similarity_threshold: | |
example = dataset[random_sample[idx]] | |
for a in example["answers"]["text"]: | |
negative_ctxs.append({"title": "", "text": clean_answer(a)}) | |
if len(negative_ctxs) > min_count: | |
break | |
return negative_ctxs[:min_count] | |
def generate_dpr_training_file(args): | |
embedder = SentenceTransformer(args.embedding_model) | |
eli5_train_set = load_dataset("vblagoje/lfqa", split="train") | |
eli5_validation_set = load_dataset("vblagoje/lfqa", split="validation") | |
eli5_test_set = load_dataset("vblagoje/lfqa", split="test") | |
train_set = embedder.encode([example["title"] for example in eli5_train_set], convert_to_tensor=True, | |
show_progress_bar=True) | |
validation_set = embedder.encode([example["title"] for example in eli5_validation_set], convert_to_tensor=True, | |
show_progress_bar=True) | |
test_set = embedder.encode([example["title"] for example in eli5_test_set], convert_to_tensor=True, | |
show_progress_bar=True) | |
exclude_answer_patterns = [re.compile("not sure what you"), re.compile("\n\n >")] | |
for dataset_name, dataset, dataset_embeddings in zip(["train", "validation", "test"], | |
[eli5_train_set, eli5_validation_set, eli5_test_set], | |
[train_set, validation_set, test_set]): | |
min_elements = 3 | |
skip_count = 0 | |
progress_bar = tqdm(range(len(dataset)), desc="Creating DPR formatted question/passage docs") | |
with open('eli5-dpr-' + dataset_name + '.jsonl', 'w') as fp: | |
for idx, example in enumerate(dataset): | |
negative_ctxs = find_negative_ctxs(dataset, dataset_embeddings, idx, exclude_answer_patterns) | |
hard_negative_ctxs = find_hard_negative_ctxs(dataset, dataset_embeddings, idx, exclude_answer_patterns) | |
positive_context = [{"text": clean_answer(a), "title": ""} for a in example["answers"]["text"] if | |
not any([p.search(a) for p in exclude_answer_patterns])] | |
if not positive_context: | |
positive_context = [{"text": clean_answer(a), "title": ""} for a in example["answers"]["text"]] | |
if len(positive_context) > 0 and len(negative_ctxs) > 0 and len(hard_negative_ctxs) >= min_elements: | |
json.dump({"id": example["q_id"], | |
"question": clean_question(example["title"]), | |
"positive_ctxs": positive_context[:min_elements], | |
"negative_ctxs": negative_ctxs[:min_elements], | |
"hard_negative_ctxs": hard_negative_ctxs[:min_elements]}, fp) | |
fp.write("\n") | |
else: | |
skip_count += 1 | |
progress_bar.update(1) | |
print(f"Skipped {skip_count} questions") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Creates DPR training file from LFQA dataset") | |
parser.add_argument( | |
"--embedding_model", | |
default="all-mpnet-base-v2", | |
help="Embedding model to use for question encoding and semantic search", | |
) | |
main_args, _ = parser.parse_known_args() | |
generate_dpr_training_file(main_args) | |